首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paleoneurology is an important field of research within human evolution studies. Variations in size and shape of an endocast help to differentiate among fossil hominin species whereas endocranial asymmetries are related to behavior and cognitive function. Here we analyse variations of the surface of the frontal, parieto-temporal and occipital lobes among different species of Homo, including 39 fossil hominins, ten fossil anatomically modern Homo sapiens and 100 endocasts of extant modern humans. We also test for the possible asymmetries of these features in a large sample of modern humans and observe individual particularities in the fossil specimens.This study contributes important new information about the brain evolution in the genus Homo. Our results show that the general pattern of surface asymmetry for the different regional brain surfaces in fossil species of Homo does not seem to be different from the pattern described in a large sample of anatomically modern H. sapiens, i.e., the right hemisphere has a larger surface than the left, as do the right frontal, the right parieto-temporal and the left occipital lobes compared with the contra-lateral side. It also appears that Asian Homo erectus specimens are discriminated from all other samples of Homo, including African and Georgian specimens that are also sometimes included in that taxon. The Asian fossils show a significantly smaller relative size of the parietal and temporal lobes. Neandertals and anatomically modern H. sapiens, who share the largest endocranial volume of all hominins, show differences when considering the relative contribution of the frontal, parieto-temporal and occipital lobes. These results illustrate an original variation in the pattern of brain organization in hominins independent of variations in total size. The globularization of the brain and the enlargement of the parietal lobes could be considered derived features observed uniquely in anatomically modern H. sapiens.  相似文献   

2.
A new model may resolve the problem of when and where did appear anatomically modern humans. According to this model, Neanderthals were probably neither our ancestor nor different species.Homo sapiens appeared probably in the Middle East, approximately 150 ka ago and differentiated to anatomically modern humans and Neanderthals because of the genetic programme. The fossils older than 150 ka are probably not Neanderthal such as Zuttiyeh and Biache-Saint-Vaast specimens. Cultural capacities of Neanderthals were probably equivalent to Moderns. Most of pre-Homo sapiens populations may be extinct without replacement byHomo sapiens. Language and modern behaviour should have arisen with our own species.  相似文献   

3.
New fossil femora attributed to Australopithecus from East Rudolf, Kenya, form the basis for a three-dimensional reconstruction of a complete femur. The reconstruction and the known fossils are compared with the femora of Homo sapiens. Although many of the features of the fossil bones fall within the overall ranges to be found in modern man, there seems, nevertheless, to be a distinctive total pattern in the femoral anatomy of Australopithecus. Biomechanical explanations for this pattern may be possible when other postcranial bones can be reconstructed with the same degree of certainty as the femur.  相似文献   

4.
Recently, nomina such as “Homo heidelbergensis” and “H. ergaster” have been resurrected to refer to fossil hominids that are perceived to be specifically distinct from Homo sapiens and Homo erectus. This results in a later human fossil record that is nearly as speciose as that documenting the earlier history of the family Hominidae. However, it is agreed that there remains only one extant hominid species: H. sapiens. Has human taxonomic diversity been significantly pruned over the last few hundred millennia, or have the number of taxa been seriously overestimated? To answer this question, the following null hypothesis is tested: polytypism was established relatively early and the species H. erectus can accommodate all spatio-temporal variation from ca. 1.7 to 0.5 Ma. A disproof of this hypothesis would suggest that modern human polytypism is a very recent phenomenon and that speciation throughout the course of human evolution was the norm and not the exception. Cranial variation in a taxonomically mixed sample of fossil hominids, and in a modern human sample, is analyzed with regard to the variation present in the fossils attributed to H. erectus. The data are examined using both univariate (coefficient of variation) and multivariate (determinant) analyses. Employing randomization methodology to offset the small size and non-normal distribution of the fossil samples, the CV and determinant results reveal a pattern and degree of variation in H. erectus that most closely approximates that of the single species H. sapiens. It is therefore concluded that the null hypothesis cannot be rejected. © 1993 Wiley-Liss, Inc.  相似文献   

5.
A fossilized fragment of human parietal bone has been recently recovered from the lowest layer of the Casal de' Pazzi fluvial deposit (stratigraphically dated at about 200–250 ky BP). The fossil presents characters-i.e., thickness, degree and development of curvature, type of endocranial vascularization-which distinguish it from the corresponding cranial regions of both Homo erectus and anatomically modern Homo sapiens. While a morphological orientation towards Neanderthal characters can be considered, the affinities of the Casal de' Pazzi parietal are primarily with other late Middle Pleistocene specimens. The authors conclude that the Casal de' Pazzi human find can be assigned to the “archaic Homo sapiens” group falling within the European pre-Neanderthal range. Its particular morphology constitutes new evidence of human evolution from the geographical area of Rome.  相似文献   

6.
Human evolution     
The common ancestor of modern humans and the great apes is estimated to have lived between 5 and 8 Myrs ago, but the earliest evidence in the human, or hominid, fossil record is Ardipithecus ramidus, from a 4.5 Myr Ethiopian site. This genus was succeeded by Australopithecus, within which four species are presently recognised. All combine a relatively primitive postcranial skeleton, a dentition with expanded chewing teeth and a small brain. The most primitive species in our own genus, Homo habilis and Homo rudolfensis, are little advanced over the australopithecines and with hindsight their inclusion in Homo may not be appropriate. The first species to share a substantial number of features with later Homo is Homo ergaster, or ‘early African Homo erectus’, which appears in the fossil record around 2.0 Myr. Outside Africa, fossil hominids appear as Homo erectus-like hominids, in mainland Asia and in Indonesia close to 2 Myr ago; the earliest good evidence of ‘archaic Homo’ in Europe is dated at between 600–700 Kyr before the present. Anatomically modern human, or Homo sapiens, fossils are seen first in the fossil record in Africa around 150 Kyr ago. Taken together with molecular evidence on the extent of DNA variation, this suggests that the transition from ‘archiac’ to ‘modern’ Homo may have taken place in Africa.  相似文献   

7.
Scenarios for modern human origins are often predicated on the assumption that modern humans arose 200,000-100,000 years ago in Africa. This assumption implies that something ‘special’ happened at this point in time in Africa, such as the speciation that produced Homo sapiens, a severe bottleneck in human population size, or a combination of the two. The common thread is that after the divergence of the modern human and Neandertal evolutionary lineages ∼400,000 years ago, there was another discrete event near in time to the Middle-Late Pleistocene boundary that produced modern humans. Alternatively, modern human origins could have been a lengthy process that lasted from the divergence of the modern human and Neandertal evolutionary lineages to the expansion of modern humans out of Africa, and nothing out of the ordinary happened 200,000-100,000 years ago in Africa.Three pieces of biological (fossil morphology and DNA sequences) evidence are typically cited in support of discrete event models. First, living human mitochondrial DNA haplotypes coalesce ∼200,000 years ago. Second, fossil specimens that are usually classified as ‘anatomically modern’ seem to appear shortly afterward in the African fossil record. Third, it is argued that these anatomically modern fossils are morphologically quite different from the fossils that preceded them.Here I use theory from population and quantitative genetics to show that lengthy process models are also consistent with current biological evidence. That this class of models is a viable option has implications for how modern human origins is conceptualized.  相似文献   

8.
HDP1 is an archaeological and faunal site located on the Hoedjiespunt peninsula at Saldanha Bay, South Africa, that has recently yielded fossil human remains. Artefacts from the associated archaeological deposits are identified as being Middle Stone Age. U series analysis of capping calcretes and analysis of the foraminifera and fauna associated with the human fossils indicate an age for the deposit in excess of 74,000 years before present, and it most probably dates to around 300,000 years before present. The fossil human teeth from in situ deposits at Hoedjiespunt are described and found to be large by comparison with modern humans but smaller than the known upper dentitions of southern African “archaic” Homo sapiens. The Hoedjiespunt molars are found to be morphologically within the range of variation observed in the teeth of modern Homo sapiens. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Fossil Humankind and Other Anthropoid Primates of China   总被引:2,自引:1,他引:1  
More than 70 sites have yielded human fossils in China. They are attributed to Homo sapiens erectus and Homo sapiens sapiens. The earliest one is possibly about 1.7 Ma. A series of common morphological features, including shovel-shaped incisors and flatness of the face, characterize them. There is a morphological mosaic between H. s. erectus and H. s. sapiens in China. The existence of common features and the morphological mosaic suggest continuity of human evolution in China. That there are a few features which are more commonly seen in the Neanderthal lineage, occurring in a few Chinese fossil skulls, probably suggests gene flow between China and the West. Based on them, in 1998 I proposed an hypothesis—continuity with hybridization—for human evolution in China. The hypothesis is supported by paleolithic archeology, and it supports the multiregional evolution hypothesis of modern human origins. The anatomically modern humans of East Asia originated most probably in China. Although some nonhuman anthropoid primates of China—Gigantopithecus, Sivapithecus, Ramapithecus and Lufengpithecus—have been suggested as the direct ancestors of human beings, the discovery of more specimens and further studies do not support these suggestions. Therefore, it is most probable that the transition between apes and humans did not occur in China.  相似文献   

10.
In the evolution of anatomically modern man and his subspecies most specialists have concentrated on investigating geographical areas other than Africa as the possible area of origin.In this study 20 fossil hominids and associated faunal remains from South and East Africa were dated by microanalysis, radiocarbon, and amino-acid dating in order to see whether modern man appears later, was sympatric, or even predated Neandertal man.These dates indicate that anatomically modern man occurs sympatrically and possibly even predates the Rhodesian group of Neandertals in Africa. Modern man might also be contemporary to and possibly even predate the occurrence of Neandertal in Europe.This would indicate that modern man did not evolve from but possibly gave rise to the Neandertals as off-shoots.Two possibilities for the evolution of modern man are suggested. First, that Homo sapiens capensis evolved about 90,000 to 100,000 years ago from possibly Homo erectus by way of a “basic” Homo sapiens and later gave rise to Homo sapiens rhodesiensis, Homo sapiens afer, and possibly Homo sapiens palestinus around 50,000 years ago with Homo neanderthalensis and Homo sapiens capensis evolving separately from Homo erectus. In this case Homo neanderthalensis would be a different species from Homo sapiens which includes Homo sapiens capensis, Homo sapiens rhodesiensis, Homo sapiens afer, and possibly Homo sapiens palestinus.Secondly, Homo sapiens capensis evolved by way of a “basic” Homo sapiens with Homo sapiens rhodesiensis and Homo sapiens palestinus branching off from Homo sapiens capensis around 50,000 years ago. Before that, around 90,000 to 100,000 years ago Homo sapiens capensis evolved first and was then followed by Homo sapiens neanderthalensis from a “basic” Homo sapiens stock, but diverged. This means, all Neandertals, Homo sapiens capensis, Homo sapiens sapiens and Homo sapiens afer can be considered as subspecies of Homo sapiens.The author favors the first scheme since on relative dating grounds the existence of Neandertal man in Europe before the earliest date of Homo sapiens capensis and a “basic” Homo sapiens seems to be fairly well documented. Irrespective of either one of these possibilities, modern man evolved in Africa and seems to have migrated into Europe and other parts of the world.New absolute dating techniques are mentioned in detail like the new radiocarbon-collagen method and amino acid dating.  相似文献   

11.
It is generally accepted that from the late Middle to the early Late Pleistocene (~340–90 ka BP), Neanderthals were occupying Europe and Western Asia, whereas anatomically modern humans were present in the African continent. In contrast, the paucity of hominin fossil evidence from East Asia from this period impedes a complete evolutionary picture of the genus Homo, as well as assessment of the possible contribution of or interaction with Asian hominins in the evolution of Homo sapiens and Homo neanderthalensis. Here we present a comparative study of a hominin dental sample recovered from the Xujiayao site, in Northern China, attributed to the early Late Pleistocene (MIS 5 to 4). Our dental study reveals a mosaic of primitive and derived dental features for the Xujiayao hominins that can be summarized as follows: i) they are different from archaic and recent modern humans, ii) they present some features that are common but not exclusive to the Neanderthal lineage, and iii) they retain some primitive conformations classically found in East Asian Early and Middle Pleistocene hominins despite their young geological age. Thus, our study evinces the existence in China of a population of unclear taxonomic status with regard to other contemporary populations such as H. sapiens and H. neanderthalensis. The morphological and metric studies of the Xujiayao teeth expand the variability known for early Late Pleistocene hominin fossils and suggest the possibility that a primitive hominin lineage may have survived late into the Late Pleistocene in China. Am J Phys Anthropol 156:224–240, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The alveolar arcades of a large number of fossil mandibles including Australopithecus and hominids fromHomo habilis andHomo erectus up to modern man have been characterized by fourteen cartesian points each representing a tooth. From these points, dimensions and angles have been calculated. These values are correlated to the geological age of the fossils. A linear dependance of dimensions and angles on the logarithm of age has been found. These results are discussed in the framework of a continuous gradual development within genus Homo and contrasted to prehominid data. Using these mean arcades and selected angles thereon the European and the AfroasiaticHomo erectus are compared and contrasted to the Neandertalians.  相似文献   

13.
Systematic excavations carried out since 1989 at Bolomor Cave have led to the recovery of four Pleistocene human fossil remains, consisting of a fibular fragment, two isolated teeth, and a nearly complete adult parietal bone. All of these specimens date to the late Middle and early Late Pleistocene (MIS 7-5e). The fibular fragment shows thick cortical bone, an archaic feature found in non-modern (i.e. non-Homo sapiens) members of the genus Homo. Among the dental remains, the lack of a midtrigonid crest in the M1 represents a departure from the morphology reported for the majority of Neandertal specimens, while the large dimensions and pronounced shoveling of the marginal ridges in the C1 are similar to other European Middle and late Pleistocene fossils. The parietal bone is very thick, with dimensions that generally fall above Neandertal fossils and resemble more closely the Middle Pleistocene Atapuerca (SH) adult specimens. Based on the presence of archaic features, all the fossils from Bolomor are attributed to the Neandertal evolutionary lineage.  相似文献   

14.
Over the last two decades, the Pleistocene sites of the Sierra de Atapuerca (Spain) have provided two extraordinary assemblages of hominin fossils that have helped refine the evolutionary story of the genus Homo in Europe. The TD6 level of the Gran Dolina site has yielded about one hundred remains belonging to a minimum of six individuals of the species Homo antecessor. These fossils, dated to the end of the Lower Pleistocene (800 kyr), provide the earliest evidence of hominin presence in Western Europe. The origin of these hominins is unknown, but they may represent a speciation event from Homo ergaster/Homo erectus. The TD6 fossils are characterized by a significant increase in cranial capacity as well as the appearance of a “sapiens” pattern of craniofacial architecture. At the Sima de los Huesos site, more than 4,000 human fossils belonging to a minimum of 28 individuals of a Middle Pleistocene population (ca. 500–400 kyr) have been recovered. These hominins document some of the oldest evidence of the European roots of Neanderthals deep in the Middle Pleistocene. Their origin would be the dispersal out of Africa of a hominin group carrying Mode 2 technologies to Europe. Comparative study of the TD6 and Sima de la Huesos hominins suggests a replacement model for the European Lower Pleistocene population of Europe or interbreeding between this population and the new African emigrants.  相似文献   

15.
16.
The aim of this study was to explore differences between left‐and right‐handed subjects in sleep duration. Sleep and activity patterns were continuously registered for 12 days using actometers on 20 left‐handed and 20 right‐handed medical students in Berlin. Handedness was determined by a modified version of the Edinburgh handedness inventory. Each participant wore one actometer on each wrist. Actiwatch® Sleep Analysis Software (CNT, UK) was used to evaluate the data, and statistical calculations were performed with a non‐parametric variance analysis. A significant difference in mean sleep duration between left‐handers (7.9 h) and right‐handers (7.3 h) was determined (p=0.025 for measurement made on the dominant hand and p=0.013 for ones made on the non‐dominant hand). In contrast, the maximal phase of daily activity (acrophase) did not show any difference between the two groups. The difference in sleep duration might be caused by either the greater effort required for left‐handers to cope in a right‐handed world or by structural brain differences.  相似文献   

17.
Controversies in paleoanthropology wax and wane, but substantial interest is currently focused on Homo erectus. This species has traditionally been regarded as a member in good standing of the human family, where it is placed as an evolutionary intermediate between earlier Homo habilis and later Homo sapiens. Recently, however, some workers have questioned whether the species exists at all. If its populations have been transformed slowly toward the modern condition, and if continuity with living people can be demonstrated in many geographic regions, then any separation of Homo erectus from Homo sapiens must be largely arbitrary. In that case, only one species should be recognized and this slowly changing lineage would have to be called Homo sapiens. Other paleontologists adopt a different view, arguing that Homo erectus is not only anatomically distinctive but also restricted in its geographic distribution. They claim that the fossils from Java and China are so specialized in appearance that they cannot lie in the mainstream of human evolution. Homo erectus, strictly defined as limited to the Far East, probably went extinct without issue. If so, more modern populations must have evolved from another source, perhaps one outside of Asia altogether.  相似文献   

18.
After 20 years of research, the Atapuerca sites have provided a large amount of archaeological and palaeontological remains. Human fossils have been found in three sites: Gran Dolina, galería and Sima de los Huesos. The Early Pleistocene human fossils from Gran Dolina have been ascribed to a new species,Homo antecessor, that represent the last common ancestor of Neandertals and modern humans. The Sima de los Huesos fossils and all the European Middle Pleistocene human fossils are the ancestors exclusively of the Neandertals, which evolved in Europe in conditions of geographic and genetic isolation.  相似文献   

19.
It has been proposed that a multiregional model could describe how Homo sapiens evolved in Africa beginning 300,000 years ago. Multiregionalism would require enduring morphological or behavioral differences among African regions and morphological or behavioral continuity within each. African fossils, archeology, and genetics do not comply with either requirement and are unlikely to, because climatic change periodically disrupted continuity and reshuffled populations. As an alternative to multiregionalism, I suggest that reshuffling produced novel gene constellations, including one in which the additive or cumulative effect of newly associated genes enhanced cognitive or communicative potential. Eventual fixation of such a constellation in the lineage leading to modern H. sapiens would explain the abrupt appearance of the African Later Stone Age 50–45 thousand years ago, its nearly simultaneous expansion to Eurasia in the form of the Upper Paleolithic, and the ability of fully modern Upper Paleolithic people to swamp or replace non‐modern Eurasians.  相似文献   

20.
W. Nowaczewska  L. Ku?miński 《HOMO》2009,60(6):489-516
The occipital bun is widely considered a Neanderthal feature. Its homology to the ‘hemibun’ observed in some European Upper Palaeolithic anatomically modern humans is a current problem. This study quantitatively evaluates the degree of occipital plane convexity in African and Australian modern human crania to analyse a relationship between this feature and some neurocranial variables. Neanderthal and European Upper Palaeolithic Homo sapiens crania were included in the analysis as well. The results of this study indicated that there is a significant relationship between the degree of occipital plane convexity and the following two features in the examined crania of modern humans: the ratio of the maximum neurocranial height to the maximum width of the vault and the ratio of bregma–lambda chord to bregma–lambda arc. The results also revealed that some H. sapiens crania (modern and fossil) show the Neanderthal shape of the occipital plane and that the neurocranial height and shape of parietal midsagittal profile has an influence on occipital plane convexity in the hominins included in this study. This study suggests that the occurrence of the great convexity of the occipital plane in the Neanderthals and H. sapiens is a “by-product” of the relationship between the same neurocranial features and there is no convincing evidence that the Neanderthal occipital bun and the similar structure in H. sapiens develop during ontogeny in the same way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号