首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Controversies in paleoanthropology wax and wane, but substantial interest is currently focused on Homo erectus. This species has traditionally been regarded as a member in good standing of the human family, where it is placed as an evolutionary intermediate between earlier Homo habilis and later Homo sapiens. Recently, however, some workers have questioned whether the species exists at all. If its populations have been transformed slowly toward the modern condition, and if continuity with living people can be demonstrated in many geographic regions, then any separation of Homo erectus from Homo sapiens must be largely arbitrary. In that case, only one species should be recognized and this slowly changing lineage would have to be called Homo sapiens. Other paleontologists adopt a different view, arguing that Homo erectus is not only anatomically distinctive but also restricted in its geographic distribution. They claim that the fossils from Java and China are so specialized in appearance that they cannot lie in the mainstream of human evolution. Homo erectus, strictly defined as limited to the Far East, probably went extinct without issue. If so, more modern populations must have evolved from another source, perhaps one outside of Asia altogether.  相似文献   

2.
Cranial remains of hominids 9 and 12 from Olduvai Gorge are described in detail. O.H. 9 consists of a heavily built braincase, partly damaged and lacking the face, while O.H. 12 is less complete. The Bed II specimen is about 1.2 million years in age and shows anatomical similarities to the cranium designated ER-3733 from Koobi Fora, east of Lake Turkana. Together these African fossils provide valuable information about Homo erectus in the later Lower Pleistocene. Comparisons of O.H. 9 with several of the Choukoutien crania are also carried out. These Chinese and other Asian remains of Homo erectus cannot be placed in a secure chronological framework, but all of the material should be studied systematically in order to assess relatedness among what must be several different populations.  相似文献   

3.
New brain endocast reconstructions of Homo erectus discoveries from Indonesia since 1963 (H. erectus VI, 1963; VII, 1965; VIII, 1969) have been made and their volumes determined. In addition, older discoveries (H. erectus I, 1891; II, 1937; IV, 1937–38) have been reendocast and reconstructed, and have yielded volumes considerably different from those previously published. This is particularly so in the case of Dubois's original discovery, which yields a volume of 940 ml rather than the widely quoted volume of 750 ml. In addition, a number of morphological observations regarding hemispheric asymmetries (petalias) are provided, which suggest a condition similar to modern Homo sapiens.  相似文献   

4.
This paper reviews the evidence from Africa, Asia and Europe of the cultural associations of Middle Pleistocene hominids, as well as the hominid skeletal associations of hand-axe remains.The author points out that it is possible to make a good argument—from the evidence of Steinheim, Kanjera and Swanscombe—that the hand-axes at these sites were made by Homo sapiens. On the other hand, on the basis of Fontéchevade and Vértesszöllös, it could be claimed that Middle Pleistocene Homo sapiens was responsible for primitive flake and chopper cultures. The evidence from Java is negative while that from China is directly opposed to the view that Homo erectus made hand-axes. Only from Ternifine in Algeria and Olduvai in Tanzania is there suggestive evidence that Homo erectus in those areas might have been responsible for the hand-axe culture. Thus, it is not possible at present to make any categorical statements as to the makers of either the great hand-axe culture or the flake and chopper culture, during Middle Pleistocene times.  相似文献   

5.
ESR and U-series analyses of teeth from the palaeoanthropological site of Hexian which containedHomo erectusremains, illustrate the limited effectiveness of stand-alone ESR and U-series age estimates on faunal materials. The problem lies in the unknown U-uptake history causing very large uncertainties in the age results of both techniques. This study demonstrates the particular strength that lies in the integration of ESR and U-series dating analyses allowing the estimation of the U-uptake history. We obtained a combined ESR/U-series age estimate of 412±25 ka (average of six analyses on two teeth). This pinpoints the deposition of the faunal remains to the time of the transition between oxygen isotope stages 12 and 11. This is in agreement with the faunal composition which show a mixture of cold adapted northern mammals and more subtropical-tropical southern elements. The age also implies that the advanced HexianHomo erectusoccurred at a similar time as the less advancedHomo erectusspecimens at Locality 1 at Zhoukoudian (LI-LIII).  相似文献   

6.
The Recognition Concept of Species is examined for its potential usefulness in discriminating speciation events in the hominid fossil record. Controversies over species-specific characteristics amongHomo erectus and archaicHomo sapiens have centred on traits of the skull, largely because this element is most commonly preserved. Modern humans have an intuitive knowledge of their own Specific Mate Recognition System (SMRS), and therefore have the opportunity to compare their own SMRS to that of fossil hominids and the extent pongids. Such comparison suggests that our own skeletal SMRS may depend less on features of the skull than on the morphology of the postcranial anatomy. We propose that these components be further examined in this regard. We tentatively conclude that examination of the Recognition Concept of Species indicates that from lateHomo erectus onwards, the same SMRS has been shared in common by all hominids, including modernHomo sapiens. This suggests that, following the SMRS criterion, none of these forms can be categorized as separate species.  相似文献   

7.
Recently, nomina such as “Homo heidelbergensis” and “H. ergaster” have been resurrected to refer to fossil hominids that are perceived to be specifically distinct from Homo sapiens and Homo erectus. This results in a later human fossil record that is nearly as speciose as that documenting the earlier history of the family Hominidae. However, it is agreed that there remains only one extant hominid species: H. sapiens. Has human taxonomic diversity been significantly pruned over the last few hundred millennia, or have the number of taxa been seriously overestimated? To answer this question, the following null hypothesis is tested: polytypism was established relatively early and the species H. erectus can accommodate all spatio-temporal variation from ca. 1.7 to 0.5 Ma. A disproof of this hypothesis would suggest that modern human polytypism is a very recent phenomenon and that speciation throughout the course of human evolution was the norm and not the exception. Cranial variation in a taxonomically mixed sample of fossil hominids, and in a modern human sample, is analyzed with regard to the variation present in the fossils attributed to H. erectus. The data are examined using both univariate (coefficient of variation) and multivariate (determinant) analyses. Employing randomization methodology to offset the small size and non-normal distribution of the fossil samples, the CV and determinant results reveal a pattern and degree of variation in H. erectus that most closely approximates that of the single species H. sapiens. It is therefore concluded that the null hypothesis cannot be rejected. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Homo erectus fossils can be divided into four zoogeographic zones that show different rates of endocranial expansion during the Pleistocene. When these are also grouped into three time levels, we find small increases from early to middle forms, and regularly greater increases from middle to late forms. These increases fit a regular pattern that also accomodates all archaic types, including Neandertals, as late subspecies ofH. erectus.  相似文献   

9.
M. Elyaqtine 《Human Evolution》2001,16(3-4):159-168
The morphological variability of the temporal articular tubercle was studied inHomo erectus andHomo sapiens. Five configurations have been defined. There is a high heterogeneity amongHomo erectus. The Neandertal lineage and that leading toHomo sapiens sapiens are more homogenous, each of them exhibits a high frequency of one configuration. This study has also focused on the functional implications of this variation. A theoretical approach to two different configurations of the articular tubercle is considered in the same bony, muscular and ligamentary context. This suggests that the configuration which consists of a transverse concavity is, for the mandible depression, concomitant with a slight functional disadvantage in comparison with the cylindrical configuration. It appears that a midfacial projection allows for a compensation of this disadvantage. It is concluded that this model can be proposed for Neandertals which present a very concave articular tubercle and a typical midfacial projection.  相似文献   

10.
There are now eleven manidublar pieces from the Lower and Middle Pleistocene of Java, all but one being from the Sangiran site. All of these have been assigned toHomo erectus by most workers, while others have suggested as many as four different hominoid taxa. Sangiran 21 (Mandible E), Sangiran 22 (Mandible F), and Sangiran 37 (Mandible G) are described here fully for the first time. Sangiran 21, 22, and 27 all come from the Upper Pucangan Formation and date approximately 1.2 Myr. The new mandibles are morphologically compatible with theH. erectus, crania from Java.  相似文献   

11.
Computed tomography scans of the proximal femoral shaft of the South African “robust” australopithecine, A. robustus, reveal a total morphological pattern that is similar to the specimen attributed to A. boisei in East Africa but unlike that of Homo erectus or modern human femora. Like femora attributed to H. erectus, SK 82 and 97 have very thick cortices, although they do not have the extreme increase in mediolateral buttressing that is so characteristic of H. erectus. And unlike H. erectus or modern humans, their femoral heads are very small relative to shaft strength. These features are consistent with both increased overall mechanical loading of the postcranial skeleton and a possibly slightly altered pattern of bipedal gait relative to that of H. erectus and modern humans. Am J Phys Anthropol 109:509–521, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

12.
D. E. Tyler 《Human Evolution》2003,18(3-4):229-241
There are now eleven known mandibular remains from the Lower and Middle Pleistocene of Java, all but one being from the Sangiran site. All of these have been assigned toHomo erectus by most workers, while others have suggested as many as four different hominoid taxa. The author finds that the jaws cannot be a homogeneous sample. Morphologically, they are a mixture of undoubtedH. erectus, “H. meganthropus,” and possibly a pongid. If the jaws are allH. erectus then they have a sexual dimorphism exceeding that of modern gorillas. The case of“Pithecanthropus dubius” (Sangiran 5) is even less certain; even its hominid status is disputed. If it is indeedHomo it must be placed with the other“H. meganthropus” specimens. Its size and morphology are well beyond the known range anyH. erectus.  相似文献   

13.
A fragment of mandible and a maxillary incisor of different individuals from the Longgupo Cave, China have been cited as evidence of an early dispersal ofHomo from Africa to Asia. More specifically, these specimens are said to resemble “Homo ergaster” orHomo habilis, rather than the species usually thought to be the first Asian colonizer,Homo erectus. If this supposition is correct, it calls into question which hominid (sensu stricto) first left Africa, and why hominids became a colonizing species. Furthermore, the Longgupo remains have been used to buttress the argument thatHomo erectus evolved uniquely in Asia and was not involved in the origins of modern humans. We question this whole line of argument because the mandibular fragment cannot be distinguished from penecontemporary fossil apes, especially the Late Miocene-Pliocene Chinese genusLufengpithecus, while the incisor is indistinguishable from those of recent and living east Asian people and may be intrusive in the deposit. We believe that the Longgupo mandible represents the relic survival of a Late Miocene ape lineage into a period just prior to the dispersal of hominids into southeastern Asia, with some female dental features that parallel the hominid condition. If the Longgupo mandibular fragment represents a member of theLufengpithecus clade, it demonstrates that hominoids other thanGigantopithecus and the direct ancestor of the orangutan persisted in east Asia into the Late Pliocene, while all other Eurasian large-bodied hominoids disappeared in the Late Miocene.  相似文献   

14.
Fossils recognized as early Homo were discovered first at Olduvai Gorge in 1959 and 1960. Teeth, skull parts and hand bones representing three individuals were found in Bed I, and more material followed from Bed I and lower Bed II. By 1964, L.S.B. Leakey, P.V. Tobias, and J.R. Napier were ready to name Homo habilis. But almost as soon as they had, there was confusion over the hypodigm of the new species. Tobias himself suggested that OH 13 resembles Homo erectus from Java, and he noted that OH 16 has teeth as large as those of Australopithecus. By the early 1970s, however, Tobias had put these thoughts behind him and returned to the opinion that all of the Olduvai remains are Homo habilis. At about this time, important discoveries began to flow from the Koobi Fora region in Kenya. To most observers, crania such as KNM-ER 1470 confirmed the presence of Homo in East Africa at an early date. Some of the other specimens were problematical. A.C. Walker and R.E. Leakey raised the possibility that larger skulls including KNM-ER 1470 differ significantly from smaller-brained, small-toothed individuals such as KNM-ER 1813. Other workers emphasized that there are differences of shape as well as size among the hominids from Koobi Fora. There is now substantial support for the view that in the Turkana and perhaps also in the Olduvai assemblages, there is more variation than would be expected among male and female conspecifics. One way to approach this question of sorting would be to compare all of the new fossils against the original material from Olduvai which was used to characterize Homo habilis in 1964. A problem is that the Olduvai remains are fragmentary, and none of them provides much information about vault form or facial structure. An alternative is to work first with the better crania, even if these are from other sites. I have elected to treat KNM-ER 1470 and KNM-ER 1813 as key individuals. Comparisons are based on discrete anatomy and measurements. Metric results are displayed with ratio diagrams, by which similarity in proportions for several skulls can be assessed in respect to a single specimen selected as a standard. Crania from Olduvai examined in this way are generally smaller than KNM-ER 1470, although OH 7 has a relatively long parietal. In the Koobi Fora assemblage, there is variation in brow thickness, frontal flattening and parietal shape relative to KNM-ER 1470. These comparisons are instructive, but vault proportions do not help much with the sorting process. Contrasts in the face are much more striking. Measurements treated in ratio diagrams show that both KNM-ER 1813 and OH 24 have relatively short faces with low cheek bones, small orbits and low nasal openings. Also, they display more projection of the midfacial region, just below the nose. This is not readily interpreted to be a female characteristic, since in most hominoid primates the females tend to have flatter lower faces than the males. The obvious size differences among these individuals have usually been interpreted as sex dimorphism, but, in fact, two taxa may be sampled at Olduvai and in the Turkana basin at the beginning of the Pleistocene. One large-brained group made up of KNM-ER 1470, several other Koobi Fora specimens, and probably OH 7, can be called Homo habilis. If these skulls go with femora such as KNM-ER 1481 and the KNM-ER3228 hip, then this species is close in postcranial anatomy to Homo erectus. The other taxon, including small-brained individuals such as KNM-ER 1813 and probably OH 13, seems also to be Homo rather than Australopithecus. If the OH 62 skeleton is part of this assemblage, then the small hominids have postcranial proportions unlike those of Homo erectus. However, it is too early to point unequivocally to one or the other of these groups as the ancestors of later humans. Both differ from Homo erectus in important ways, and both need to be better understood before we can map the earliest history of the Homo clade. © 1993 Wiley-Liss, Inc.  相似文献   

15.
D. E. Tyler 《Human Evolution》1991,6(5-6):401-420
The mandibular remains from Java have been controversial since the discovery of Kedung Brubus (Mandible A) in 1890. These mandibles, now called Kedung Brubus, and Sangiran 1, 5, 6, 8, 9, and 22, have been assigned to a wide variety of taxa. It is now commonly accepted that all seven mandibles can be accommodated in a single species;Homo erectus. A recent assessment to this effect was performed by Kramer (1989). Utilizing powerful statistical techniques he distinguished the Sangiran mandibles from the robust australopithecines and placed them all withinH. erectus. The jaws are not a homogeneous sample. Morphologically they are a mixture ofAustralopithecus africanus («Homo habilis») males (5,6), anA. africanus («H. habilis») female (8),H. erectus males (1,9), and aH. erectus female (22) and Kedung Brubus. The dating of these fossils remains unresolved, with a minimum date of 500,000 ya and a maximum of 1.6 mya. Any of the mandibles may have been transported and secondarily redeposited. If the jaws are allH. erectus then they have a sexual dimorphism exceeding that of modern gorillas. When Kedung Brubus is included with those from Sangiran the range of size dimorphism is well beyond that known for any primate, thus more than one species may be invloved. This dimorphism is found inA. africanus («H. habilis») but not inH. erectus samples anywhere else in the world. TheH. erectus skulls found in Java correspond with mandibles 1, 9, and 22. It is not likely that the largest mandible (6) is aH. erectus, because the skull would have had heavy temporal lines and probably a sagittal crest, neither of which is found on anyH. erectus specimen. But, a cranium has been found which morphologically matches the Sangiran 6 mandible. A double sagittal crest is present on Sangiran 31 a reported «Meganthropus» specimen.  相似文献   

16.
Human evolution     
The common ancestor of modern humans and the great apes is estimated to have lived between 5 and 8 Myrs ago, but the earliest evidence in the human, or hominid, fossil record is Ardipithecus ramidus, from a 4.5 Myr Ethiopian site. This genus was succeeded by Australopithecus, within which four species are presently recognised. All combine a relatively primitive postcranial skeleton, a dentition with expanded chewing teeth and a small brain. The most primitive species in our own genus, Homo habilis and Homo rudolfensis, are little advanced over the australopithecines and with hindsight their inclusion in Homo may not be appropriate. The first species to share a substantial number of features with later Homo is Homo ergaster, or ‘early African Homo erectus’, which appears in the fossil record around 2.0 Myr. Outside Africa, fossil hominids appear as Homo erectus-like hominids, in mainland Asia and in Indonesia close to 2 Myr ago; the earliest good evidence of ‘archaic Homo’ in Europe is dated at between 600–700 Kyr before the present. Anatomically modern human, or Homo sapiens, fossils are seen first in the fossil record in Africa around 150 Kyr ago. Taken together with molecular evidence on the extent of DNA variation, this suggests that the transition from ‘archiac’ to ‘modern’ Homo may have taken place in Africa.  相似文献   

17.
D. E. Tyler 《Human Evolution》2001,16(3-4):151-158
There are now eleven known mandibular pieces from the Lower and Middle Pleistocene of Java, all but one being from the Sangiran site. All of these have been assigned toHomo erectus by most authorities, while others have suggested as many as four different hominoid taxa. Two of the mandibles, Sangiran 33 (Mandible H) and“Meganthropus”D (no Sangiran number yet assigned), are described here for the first time. The two new mandibles come from the Upper Pucangan Formation and date approximately 1.2–1.4 Myr. They are morphologically compatible with other“Meganthropus” mandibles described from Java. Despite attempts by numerous authorities to place all the Sangiran hominid mandibles in the species,H. erectus, the range of variation in metric and nonmetric features of the“Meganthropus” hominids is clearly beyond the know variation found inH. erectus. “Meganthropus” could represent a speciation from the well-knownH. erectus.  相似文献   

18.
Since 1991, several human remains: 5 skulls, 4 mandibles and numerous postcranial fragments have been discovered on the Dmanissi prehistoric open site. It is an exceptional discovery due to the stratigraphical, paleontological and cultural context, which is well known and accurately well dated (Upper Pliocene-Early Pleistocene). Most of the hominids discovered in the level V and VI are dated between 1.81 My (level V) and 1.77 My (level VI) corresponding to a 40,000 years period. The assemblage of fossil human remains is peculiar due to (1) the quality of bone representation (distinct parts of the skeleton are preserved: skull, thorax, upper and lower limbs, belt), (2) the high degree of bone preservation (skulls and long bones are entire, rarely broken or crushed), (3) the diversity age at death estimated for each of the 5 individuals (3 adults, 1 young adult, 1 adolescent of both sexes). The study dealing with the first discovered mandibles and skulls has begun with Leo Gabounia since 1991 and represents several interests: 1) a paleoanthropological interest: the Dmanissi skulls are characterized by their small size; they are short, narrow and low. The skullcaps are less elevated than those of the Homo erectus group and even those of Homo ergaster. They are more elevated than those of Homo habilis and very close to Homo rudolfensis. The elevation and the transversal development of the middle part of the skull in the parietotemporal region are more significant: the Dmanissi specimens are intermediate between Homo habilis and Homo ergaster. In term of cranial capacity, a similar trend is observed. Generally speaking, the skull is slender. The vault is more flat than in Homo erectus, the frontal bone is less developed, divergent and the postorbital constriction is strong. The temporal bone is long, flat and the mastoid part is short. The upper part of the occipital bone is low and narrow. Crests are thin, less developed than in the Homo erectus group. The superior temporal crests are in a high position and a torus angularis is present on the adult-male specimen. The glenoid cavity is large with strong edges. The petrotympanic region is slender with a tympanic circle individualized and it shows a horizontal rotation in a posterior position, which is distinct from Homo erectus. The orthognathic trend of the face distinguishes the Dmanissi specimens from the early Pleistocene hominids (Homo habilis, Homo ergaster) and from the first Eurasian Homo erectus. Nevertheless, the subnasal region of the face is projected. The morphology of the mid-face, showing a developed pillar of the canine, an inframalar incurvation and an anterior position of the root of the zygomaticomaxillary crest, suggests strong masticatory stress. Considering the overall morphology, cranial and metrical features, the Dmanissi fossil skulls are intermediate to the Homo habilis-rudolfensis group and Homo ergaster while they are closer to the former and peculiarly to Homo rudolfensis (ER 1470). However, the Dmanissi fossil skulls are distinct from Homo rudolfensis by numerous features and among them: by their large maximum cranial width (Euryon-Euryon), the posterior rotation of their petrotympanic structure and the strong development of the pillar of their canine. Due to the gracility of their face, the narrowness of their occipital bone, and their cranial base pattern (mastoid region and petrotympanic structure), the Dmanissi fossil skulls are different from the Homo erectus group: 2) the abundance of the human fossils discovered in Dmanissi site provides information about the biodiversity of these hominids with the establishment of the morphological features related to either growth or sexual patterns: 3) compared to modern humans, the Dmanissi fossil skulls seem to follow a different growth pattern. The present study of the fossil skulls discovered is a pioneer step. Indeed, the Dmanissi site has yielded the oldest evidences of the first settlements in Eurasia, which were, until now, attributed to Homo erectus. The Dmanissi fossil skulls are close to the Homo habilis-rudolfensis African group. We attribute these hominids to Homo georgicus.  相似文献   

19.
The relationship between Homo habilis and early African Homo erectus has been contentious because H. habilis was hypothesized to be an evolutionary stage between Australopithecus and H. erectus, more than a half‐century ago. Recent work re‐dating key African early Homo localities and the discovery of new fossils in East Africa and Georgia provide the opportunity for a productive re‐evaluation of this topic. Here, we test the hypothesis that the cranial sample from East Africa and Georgia represents a single evolutionary lineage of Homo spanning the approximately 1.9–1.5 Mya time period, consisting of specimens attributed to H. habilis and H. erectus. To address issues of small sample sizes in each time period, and uneven representation of cranial data, we developed a novel nonparametric randomization technique based on the variance in an index of pairwise difference from a broad set of fossil comparisons. We fail to reject the hypothesis of a single lineage this period by identifying a strong, time‐dependent pattern of variation throughout the sequence. These results suggest the need for a reappraisal of fossil evidence from other regions within this time period and highlight the critical nature of the Plio‐Pleistocene boundary for understanding the early evolution of the genus Homo.  相似文献   

20.
The Nariokotome boy skeleton KNM‐WT 15000 is the most complete Homo erectus fossil and therefore is key for understanding human evolution. Nevertheless, since Latimer and Ohman (2001) reported on severe congenital pathology in KNM‐WT 15000, it is questionable whether this skeleton can still be used as reference for Homo erectus skeletal biology. The asserted pathologies include platyspondylic and diminutive vertebrae implying a disproportionately short stature; spina bifida; condylus tertius; spinal stenosis; and scoliosis. Based on this symptom complex, the differential diagnosis of spondyloepiphyseal dysplasia tarda, an extremely rare form of skeletal dysplasia, has been proposed. Yet, our reanalysis of these pathologies shows that the shape of the KNM‐WT 15000 vertebrae matches that of normal modern human adolescents. The vertebrae are not abnormally flat, show no endplate irregularities, and thus are not platyspondylic. As this is the hallmark of spondyloepiphyseal dysplasia tarda and related forms of skeletal dysplasia, the absence of platyspondyly refutes axial dysplasia and disproportionate dwarfism. Furthermore, we neither found evidence for spina bifida occulta nor manifesta, whereas the condylus tertius, a developmental anomaly of the cranial base, is not related to skeletal dysplasias. Other fossils indicate that the relatively small size of the vertebrae and the narrow spinal canal are characteristics of early hominins rather than congenital pathologies. Except for the recently described signs of traumatic lumbar disc herniation, the Nariokotome boy fossil therefore seems to belong to a normal Homo erectus youth without pathologies of the axial skeleton. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号