首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Ding  Haidong  Xie  Qihui  Ji  Yurong  Qian  Lu  Guan  Yali  Ge  Cailin 《Journal of Plant Growth Regulation》2023,42(2):908-921
Journal of Plant Growth Regulation - Mitogen-activated protein kinase (MAPK) cascades are central regulatory modules in plant growth and development, dependent on activation of downstream target...  相似文献   

3.
在植物的生长发育过程中,植物激素发挥着重要的作用. 最新研究对油菜素内酯、赤霉素两类植物激素与光的信号通路共同调控植物的细胞伸长和光形态建成的分子机制给予了精确的阐述,这也为提高农作物产量提拱了理论基础.  相似文献   

4.
Summary. Plant development is regulated by numerous chemicals derived from a multitude of metabolic pathways. However, we know very little about the biological effects and functions of many of these metabolites in the cell. N-Acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammalian physiology. Despite the intriguing similarities between animals and plants in NAE metabolism and perception, not much is known about the precise function of these metabolites in plant physiology. In plants, NAEs have been shown to inhibit phospholipase Dα (PLDα) activity, interfere with abscisic acid-induced stomatal closure, and retard Arabidopsis seedling development. 1-Butanol, an antagonist of PLD-dependent phosphatidic acid production, was reported to induce defects in Arabidopsis seedling development that were somewhat similar to effects induced by elevated levels of NAE. This raised the possibility that the impact of NAE on seedling growth could be mediated in part via its influence on PLD activity. To begin to address this possibility, we conducted a detailed, comparative analysis of the effects of 1-butanol and N-lauroylethanolamine (NAE 12:0) on Arabidopsis root cell division, in vivo cytoskeletal organization, seed germination, and seedling growth. Although both NAE 12:0 and 1-butanol induced profound cytoskeletal and morphological alterations in seedlings, there were distinct differences in their overall effects. 1-Butanol induced more pronounced modifications in cytoskeletal organization, seedling growth, and cell division at concentrations severalfold higher than NAE 12:0. We propose that these compounds mediate their differential effects on cellular organization and seedling growth, in part through the differential modulation of specific PLD isoforms. Correspondence and reprints: Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, U.S.A.  相似文献   

5.
《Autophagy》2013,9(3):257-258
Plant cells frequently encounter oxidative stress, leading to oxidative damage and inactivation of proteins. We have recently demonstrated that oxidative stress induces autophagy in Arabidopsis seedlings in an AtATG18a-dependent manner and that RNAi-AtATG18a transgenic lines, which are defective in autophagosome formation, are hypersensitive to reactive oxygen species. Analysis of protein oxidation indicated that oxidized proteins are degraded in the vacuole after uptake by autophagy, and this degradation is impaired in RNAi-AtATG18a lines. Our results also suggest that in the absence of a functional autophagy pathway, plants are under increased oxidative stress, even under normal growth conditions.

Addendum to:

Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis

Y. Xiong, A.L. Contento, N.Q. Phan and D.C. Bassham

Plant Physiol 2007; 143:291-9  相似文献   

6.
Plant Growth Regulation - Brassinosteroids (BRs) are widely used to promote plant growth/development and alleviate environmental stresses’ adverse effects. However, its low stability in the...  相似文献   

7.
Zhu  Lu  Li  Shushun  Ma  Qiuyue  Yan  Kunyuan  Ren  Jie  Chen  Zhu  Wen  Jing  Li  Qianzhong 《Journal of Plant Growth Regulation》2023,42(2):1017-1030
Journal of Plant Growth Regulation - Low temperature is one of the most prominent environmental factors affecting plant growth. As a deciduous arboreal tree, Acer palmatum has considerable...  相似文献   

8.
赤霉素(Gibberellins,GAs)作为一种植物激素,对植物的生长发育具有重要调控作用,但其作用机制有待进一步完善。F-box蛋白是SCF复合体的一个亚基,通过特异性识别底物来调控植物的生长发育。本研究采用生物信息学方法,通过分析拟南芥基因芯片数据库提供的数据筛选到38个受GA调节的候选F-box基因,并对其中6个基因进行了实时荧光定量PCR验证。Plant CARE分析显示,其中30个基因的启动子区具有GA响应元件、以及IAA、ABA、光、温度干旱胁迫、或生物钟相关的顺式作用元件。通过分析Bio Grid数据库提供的相互作用对象,发现其中18个候选F-box蛋白与GA2ox1,GA3ox1和GA3ox3具有相互作用关系。基因表达谱分析表明,这些候选F-box基因在拟南芥各个组织器官中都有不同程度的表达,对IAA、ABA、光、温度干旱等胁迫或不同光周期都具有一定的响应。为深入研究GA调控植物生长发育的分子机制提供了重要线索。  相似文献   

9.
Journal of Plant Research - Under environmental stress, plants are believed to actively repress their growth to save resource and alter its allocation to acquire tolerance against the stress....  相似文献   

10.
Plant Molecular Biology - Here we show that accumulation of galactose-containing lipids in plastid membranes in shoots and the other membranes in roots maintains Arabidopsis growth under acidic...  相似文献   

11.
Journal of Plant Biochemistry and Biotechnology - Light regulates numerous aspects of plant growth and development like seed germination, seedling de-etiolation, pigment accumulation, cotyledon...  相似文献   

12.
Plant cells frequently encounter oxidative stress, leading to oxidative damage and inactivation of proteins. We have recently demonstrated that oxidative stress induces autophagy in Arabidopsis seedlings in an AtATG18a-dependent manner and that RNAi-AtATG18a transgenic lines, which are defective in autophagosome formation, are hypersensitive to reactive oxygen species. Analysis of protein oxidation indicated that oxidized proteins are degraded in the vacuole after uptake by autophagy, and this degradation is impaired in RNAi-AtATG18a lines. Our results also suggest that in the absence of a functional autophagy pathway, plants are under increased oxidative stress, even under normal growth conditions.  相似文献   

13.
Plasma membrane proteome in Arabidopsis and rice   总被引:1,自引:0,他引:1  
Komatsu S 《Proteomics》2008,8(19):4137-4145
Plant cells contain many membrane systems that are specially adapted to perform particular functions. In plant cells, the processing of signals that are involved in responses to biotic and abiotic stressors occurs in the plasma membrane. Therefore, characterization of the plasma membrane proteome can provide new insights into the functions of various plant membrane systems. Plant plasma membrane proteomics can also provide valuable information for plant-specific biological investigations. Despite recent advances in preparative and analytical techniques for plant plasma membrane proteins, the characterization of these proteins, particularly the hydrophobic ones, remains challenging. In this review, plant plasma membrane proteomics data compiled from the literature on Arabidopsis thaliana are presented. Initial attempts to determine the physiological significance of some proteins identified from plasma membrane proteomics in rice and other plants are also described from the results of our research.  相似文献   

14.
Journal of Plant Growth Regulation - Plant growth and development are tightly regulated by phytohormones, including jasmonic acid (JA) and ethylene (ET), two canonical players in plant defense and...  相似文献   

15.
Phosphate availability regulates root system architecture in Arabidopsis   总被引:31,自引:0,他引:31  
Plant root systems are highly plastic in their development and can adapt their architecture in response to the prevailing environmental conditions. One important parameter is the availability of phosphate, which is highly immobile in soil such that the arrangement of roots within the soil will profoundly affect the ability of the plant to acquire this essential nutrient. Consistent with this, the availability of phosphate was found to have a marked effect on the root system architecture of Arabidopsis. Low phosphate availability favored lateral root growth over primary root growth, through increased lateral root density and length, and reduced primary root growth mediated by reduced cell elongation. The ability of the root system to respond to phosphate availability was found to be independent of sucrose supply and auxin signaling. In contrast, shoot phosphate status was found to influence the root system architecture response to phosphate availability.  相似文献   

16.
Journal of Plant Biochemistry and Biotechnology - Abiotic stresses like drought, extreme temperature, and lack of sufficient water or nutrients adversely affect plant growth and productivity. The...  相似文献   

17.
Journal of Plant Research - Phytoparasitic nematodes parasitize many species of rooting plants to take up nutrients, thus causing severe growth defects in the host plants. During infection,...  相似文献   

18.
Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.  相似文献   

19.
Meyer LJ  Gao J  Xu D  Thelen JJ 《Plant physiology》2012,159(1):517-528
To characterize protein phosphorylation in developing seed, a large-scale, mass spectrometry-based phosphoproteomic study was performed on whole seeds at five sequential stages of development in soybean (Glycine max), rapeseed (Brassica napus), and Arabidopsis (Arabidopsis thaliana). Phosphopeptides were enriched from 0.5 mg of total peptides using a combined strategy of immobilized metal affinity and metal oxide affinity chromatography. Enriched phosphopeptides were analyzed by Orbitrap tandem mass spectrometry and mass spectra mined against cognate genome or cDNA databases in both forward and randomized orientations, the latter to calculate false discovery rate. We identified a total of 2,001 phosphopeptides containing 1,026 unambiguous phosphorylation sites from 956 proteins, with an average false discovery rate of 0.78% for the entire study. The entire data set was uploaded into the Plant Protein Phosphorylation Database (www.p3db.org), including all meta-data and annotated spectra. The Plant Protein Phosphorylation Database is a portal for all plant phosphorylation data and allows for homology-based querying of experimentally determined phosphosites. Comparisons with other large-scale phosphoproteomic studies determined that 652 of the phosphoproteins are novel to this study. The unique proteins fall into several Gene Ontology categories, some of which are overrepresented in our study as well as other large-scale phosphoproteomic studies, including metabolic process and RNA binding; other categories are only overrepresented in our study, like embryonic development. This investigation shows the importance of analyzing multiple plants and plant organs to comprehensively map the complete plant phosphoproteome.  相似文献   

20.
Plant Molecular Biology - Isoforms of 2-OGDH E1 subunit are not functionally redundant in plant growth and development of A. thaliana. The tricarboxylic acid cycle enzyme 2-oxoglutarate...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号