首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 690 毫秒
1.
The newly described CATERPILLER family (also known as NOD-LRR or NACHT-LRR) is comprised of proteins with a nucleotide-binding domain and a leucine-rich region. This family has gained rapid prominence because of its demonstrated and anticipated roles in immunity, cell death and growth, and diseases. CATERPILLER proteins are structurally similar to a subgroup of plant-disease-resistance (R) proteins and to the apoptotic protease activating factor 1 (APAF1). They provide positive and negative signals for the control of immune and inflammatory responses, and might represent intracellular sensors of pathogen products. Most importantly, they are genetically linked to several human immunological disorders.  相似文献   

2.
Efficient and specific host cell entry is of exquisite importance for intracellular pathogens. Parasites of the phylum Apicomplexa are highly motile and actively enter host cells. These functions are mediated by type I transmembrane invasins of the TRAP family that link an extracellular recognition event to the parasite actin-myosin motor machinery. We systematically tested potential parasite invasins for binding to the actin bridging molecule aldolase and complementation of the vital cytoplasmic domain of the sporozoite invasin TRAP. We show that the ookinete invasin CTRP and a novel, structurally related protein, termed TRAP-like protein (TLP), are functional members of the TRAP family. Although TLP is expressed in invasive stages, targeted gene disruption revealed a nonvital role during life cycle progression. This is the first genetic analysis of TLP, encoding a redundant TRAP family invasin, in the malaria parasite.  相似文献   

3.
Human ribonucleases (RNases) are members of a large superfamily of rapidly evolving homologous proteins. Upon completion of the human genome, eight catalytically active RNases (numbered 1-8) were identified. These structurally distinct RNases, characterized by their various catalytic differences on different RNA substrates, constitute a gene family that appears to be the sole vertebrate-specific enzyme family. Apart from digestion of dietary RNA, a wide variety of biological actions, including neurotoxicity, angiogenesis, immunosuppressivity, and anti-pathogen activity, have been recently reported for almost all members of the family. Recent evolutionary studies suggest that RNases started off in vertebrates as host defence or angiogenic proteins.  相似文献   

4.
Liang Y  Tedder TF 《Genomics》2001,72(2):119-127
CD20, high-affinity IgE receptor beta chain (FcepsilonRIbeta), and HTm4 are structurally related cell-surface proteins expressed by hematopoietic cells. In the current study, 16 novel human and mouse genes that encode new members of this nascent protein family were identified. All family members had at least four potential membrane-spanning domains, with N- and C-terminal cytoplasmic domains. This family was therefore named the membrane-spanning 4A gene family, with at least 12 subgroups (MS4A1 through MS4A12) currently representing at least 21 distinct human and mouse proteins. Each family member had unique patterns of expression among hematopoietic cells and nonlymphoid tissues. Four of the 6 human MS4A genes identified in this study mapped to chromosome 11q12-q13.1 along with CD20, FcepsilonRIbeta, and HTm4. Thus, like CD20 and FcepsilonRIbeta, the other MS4A family members are likely to be components of oligomeric cell surface complexes that serve diverse signal transduction functions.  相似文献   

5.
The hematopoietins constitute a family of structurally related proteins that includes many cytokines, growth factors and hormones. We propose a classification for hematopoietins based on their size, gene organization and sequences; in addition, we further suggest that three cytokines, IL-11, IL-12 alpha chain and IL-13, are hematopoietins, and we place them in specific subgroups.  相似文献   

6.
The identification of a novel hit compound as integrase binding inhibitor has been accomplished by means of virtual screening techniques. A small family of structurally related molecules has been synthesized and biologically evaluated with one of the compounds showing an IC(50)=12 microM.  相似文献   

7.
Hawke NA  Yoder JA  Litman GW 《Immunogenetics》1999,50(3-4):124-133
 The immunoglobulin superfamily (IgSF) is an extensively diversified multigene family whose members share a common structural feature, the Ig fold. Members of the Ig/T-cell antigen receptor (TCR) subset of the IgSF mediate antigen-specific recognition in adaptive immune responses. Antigen-binding receptors belonging to this subset are present in all species of jawed vertebrates. To explore whether there are additional structurally related but otherwise distinct members of this subset, we have developed a technique termed the short-primer polymerase chain reaction (PCR) that targets structurally conserved short motifs in the Ig fold. Large-scale sequencing efforts and recent advances in information biotechnology, including "electronic PCR," provide additional computational means to implement similarly directed searches within databases. The use of these approaches has led to the discoveries of Ig/TCR homologues in a variety of phylogenetically diverse organisms, a diversified family of novel immune-type receptor genes, as well as a novel human IgSF member. The potential of random sequencing efforts and virtual screening of databases is described in the context of two novel genes in bony fish. The various methodologies that are discussed and the examples shown provide means for further investigating, and/or elucidating novel, IgSF receptors as well as components of pathways that are involved in immune responses in both traditional and nontraditional model systems.  相似文献   

8.
SLC23 family members are transporters of either nucleobases or ascorbate. While the mammalian SLC23 ascorbate transporters are sodium-coupled, the non-mammalian nucleobase transporters have been proposed, but not formally shown, to be proton-coupled symporters. This assignment is exclusively based on in vivo transport assays using protonophores. Here, by establishing the first in vitro transport assay for this protein family, we demonstrate that a representative member of the SLC23 nucleobase transporters operates as a uniporter instead. We explain these conflicting assignments by identifying a critical role of uracil phosphoribosyltransferase, the enzyme converting uracil to UMP, in driving uracil uptake in vivo. Detailed characterization of uracil phosphoribosyltransferase reveals that the sharp reduction of uracil uptake in whole cells in presence of protonophores is caused by acidification-induced enzyme inactivation. The SLC23 family therefore consists of both uniporters and symporters in line with the structurally related SLC4 and SLC26 families that have previously been demonstrated to accommodate both transport modes as well.  相似文献   

9.
Data on properties, structure and biological functions of a variety of thiol (cysteine) peptide hydrolases from animal tissues have been summarized. This large group of diverse intracellular enzymes involves both endo- and exopeptidases. Best studied are lysosomal thiol peptide hydrolases: cathepsins B, H and L, the primary structure of which is deciphered. They present a family of homologous proteins, structurally similar to papain. Ca2+-dependent neutral proteinases is another family of related proteins. The biological functions of various thiol peptide hydrolases are considered: their participation in protein turnover, post-translational processing, regulation of unidirectional biological processes and metabolic refolding. Data on endogenous inhibitors of thiol peptide hydrolases and on regulation of enzymic activity are presented.  相似文献   

10.
Ubiquitin: structures, functions, mechanisms   总被引:23,自引:0,他引:23  
Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity.  相似文献   

11.
Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology   总被引:21,自引:0,他引:21  
Caspases are the central component of the apoptotic machinery that irreversibly commits a cell to die. Whereas all caspases are structurally similar, those involved in apoptosis can be categorized functionally as either initiator or effector caspases, which are activated by distinct mechanisms. The activated caspases are subject to inhibition by the inhibitor of apoptosis family of proteins. This inhibition can be removed by Smac/DIABLO during apoptosis. The underlying molecular mechanisms of caspase regulation are discussed in this article.  相似文献   

12.
Myotubularin-related proteins are a large subfamily of protein tyrosine phosphatases (PTPs) that dephosphorylate D3-phosphorylated inositol lipids. Mutations in members of the myotubularin family cause the human neuromuscular disorders myotubular myopathy and type 4B Charcot-Marie-Tooth syndrome. The crystal structure of a representative member of this family, MTMR2, reveals a phosphatase domain that is structurally unique among PTPs. A series of mutants are described that exhibit altered enzymatic activity and provide insight into the specificity of myotubularin phosphatases toward phosphoinositide substrates. The structure also reveals that the GRAM domain, found in myotubularin family phosphatases and predicted to occur in approximately 180 proteins, is part of a larger motif with a pleckstrin homology (PH) domain fold. Finally, the MTMR2 structure will serve as a model for other members of the myotubularin family and provide a framework for understanding the mechanism whereby mutations in these proteins lead to disease.  相似文献   

13.
E Kube  K Weber  V Gerke 《Gene》1991,102(2):255-259
The p11 protein is a member of the S-100 family of Ca(2+)-binding proteins and serves within the cell as a ligand of the tyrosine kinase substrate, annexin II. To obtain more structural information on this molecule, we have isolated and characterized p11 cDNA clones from several different species. A comparison of the deduced amino acid (aa) sequences reveals that mammalian and avian p11 are highly similar (at least 90% identical at the aa level), whereas p11 from Xenopus laevis shows a considerable degree of sequence variation (the aa sequence identity drops to approx. 60% when compared to mammalian or chicken p11). Interestingly, the C-terminal 18 aa, which are unique to p11 within the S-100 family, show a relatively high conservation among species. This high evolutionary conservation is in line with a structurally and/or functionally important role of this C terminus, e.g., in annexin II binding.  相似文献   

14.
This paper describes a rapid, automated procedure which can be used for model building sidechains using (i) spatial information from sidechains in topologically equivalent positions as far as such a correlation is observed, and then (ii) most probable conformations of the sidechains in the respective secondary structure type. Analysis of topologically equivalent residues in the structurally conserved regions of a family of proteins implies that the spatial positions of the atoms in the sidechains rather than conformations should be considered when model building. Rules for the modelling of all 20 side-chains from each other in alpha-helical, beta-sheet and loop regions--a total of 1200--are established. Cluster analysis is used on positional data from the sidechain atoms of structurally equivalent residues in an homologous family to guide modelling. The most probable conformation for the sidechain is used for modelling atoms where no useful guidance is obtainable from equivalent sidechains of the homologous proteins. In order to test the procedure we have modelled the sidechains of the residues in the structurally conserved regions of myoglobin from four other globins. The automated procedure described here has been incorporated into the program COMPOSER.  相似文献   

15.
16.
Fibroblast growth factors (FGFs) are a family of structurally related polypeptides that are essential for embryonic development and that function postnatally as homoeostatic factors, in the response to injury, in the regulation of electrical excitability of cells and as hormones that regulate metabolism. In humans, FGF signalling is involved in developmental, neoplastic, metabolic and neurological diseases. Fgfs have been identified in metazoans but not in unicellular organisms. In vertebrates, FGFs can be classified as having intracrine, paracrine and endocrine functions. Paracrine and endocrine FGFs act via cell-surface FGF receptors (FGFRs); while, intracrine FGFs act independent of FGFRs. The evolutionary history of the Fgf family indicates that an intracrine Fgf is the likely ancestor of the Fgf family. During metazoan evolution, the Fgf family expanded in two phases, after the separation of protostomes and deuterostomes and in the evolution of early vertebrates. These expansions enabled FGFs to acquire diverse actions and functions.  相似文献   

17.
Over the past decade, multi-disciplinary approaches have led to the discovery and characterization of several classes of adhesion molecules. Under normal conditions, these molecules provide support for cells, regulate cell migration and contain information that cells use when sensing their environment. In disease, adhesive function is frequently compromised and results in tissue disorder, aberrant cell migration and dysregulation of signalling pathways. The integrins are a major family of adhesion receptors produced by most cell types and are a means by which the cell senses its immediate environment and responds to changes in extracellular matrix composition. Recent years have seen major advances in our understanding of integrin-ligand interactions, and have revealed a structurally dynamic family of receptors capable of translating information into and out of the cell.  相似文献   

18.
A novel compound inhibiting HIV-1 integrase has been identified by means of virtual screening techniques. A small family of structurally related molecules has been synthesized and biologically evaluated with some of the compounds possessing micromolar activity both in enzymatic and cellular assays.  相似文献   

19.
Caspase inhibitors: viral, cellular and chemical   总被引:1,自引:0,他引:1  
Caspases, key mediators of apoptosis, are a structurally related family of cysteine proteases that cleave their substrates at aspartic acid residues either to cause cell death or to activate cytokines as part of an immune response. They can be controlled upstream by the regulation of signals that lead to zymogen activation, or downstream by inhibitors that prevent them from reaching their substrates. This review specifically looks at caspase inhibitors as distinct from caspase regulators: those produced by the cell itself; those whose genes are carried by viruses; and artificial caspase inhibitors used for research and potentially as therapeutics.  相似文献   

20.
Annexins (or lipocortins) are a family of at least 10 structurally related calcium- and phospholipid-binding proteins. Each protein consists of a conserved core domain having four (or eight) repeats of a segment approximately 70 amino acids in length and a nonconserved, usually short, amino-terminal domain. To date, amino acid sequences for eight distinct mammalian annexins have been predicted from cDNAs. This report describes an additional member of this family, bovine annexin XI, identified by cDNA cloning and sequence analysis. The 503-amino acid deduced protein consists of a core domain of four annexin repeats and a long amino-terminal domain rich in glycine, proline, and tyrosine. This novel annexin gene is expressed in a wide variety of tissues and isolated cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号