首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   41篇
  2022年   1篇
  2021年   6篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2013年   14篇
  2012年   8篇
  2011年   14篇
  2010年   13篇
  2009年   6篇
  2008年   12篇
  2007年   7篇
  2006年   15篇
  2005年   7篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   9篇
  1999年   14篇
  1998年   6篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   6篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1971年   2篇
  1925年   1篇
排序方式: 共有252条查询结果,搜索用时 31 毫秒
1.
2.
Chronic lymphocytic leukemia (CLL) is characterized by progressive hypogammaglobulinemia predisposing affected patients to a variety of infectious diseases but paradoxically not to cytomegalovirus (CMV) disease. Moreover, we found reactivity of a panel of CLL recombinant antibodies (CLL-rAbs) encoded by a germ-line allele with a single CMV protein, pUL32, despite differing antibody binding motifs. To put these findings into perspective, we studied prospectively relative frequency of viremia, kinetics of total and virus-specific IgG over time, and UL32 genetic variation in a cohort of therapy-naive patients (n=200). CMV-DNA was detected in 3% (6/200) of patients. The decay of total IgG was uniform (mean, 0.03; SD, 0.03) and correlated with that of IgG subclasses 1-4 in the paired samples available (n=64; p<0.001). Total CMV-specific IgG kinetics were more variable (mean, 0,02; SD, 0,06) and mean decay values differed significantly from those of total IgG (p=0.034). Boosts of CMV-specific antibody levels were observed in 49% (22/45) of CMV-seropositive patients. In contrast, VZV- and EBV-specific IgG levels decayed in parallel with total IgG levels (p=0.003 and p=0.001, respectively). VZV-specific IgG even became undetectable in 18% (9/50) of patients whereas CMV-specific ones remained detectable in all seropositive patients. The observed CMV-specific IgG kinetics were predicated upon the highly divergent kinetics of IgG specific for individual antigens - glycoprotein B-specific IgG were boosted in 51% and pUL32-specific IgG in 32% of patients. In conclusion, CLL patients have a preserved CMV-specific antibody response despite progressive decay of total IgG and IgG subclasses. CMV-specific IgG levels are frequently boosted in contrast to that of other herpesviruses indicative of a higher rate of CMV reactivation and antigen-presentation. In contrast to the reactivity of multiple different CLL-rAbs with pUL32, boosts of humoral immunity are triggered apparently by other CMV antigens than pUL32, like glycoprotein B.  相似文献   
3.
In this study we investigated the role of Bruton''s tyrosine kinase (Btk) in the immune response to the Gram-positive intracellular bacterium Listeria monocytogenes (Lm). In response to Lm infection, Btk was activated in bone marrow-derived macrophages (BMMs) and Btk −/− BMMs showed enhanced TNF-α, IL-6 and IL-12p40 secretion, while type I interferons were produced at levels similar to wild-type (wt) BMMs. Although Btk-deficient BMMs displayed reduced phagocytosis of E. coli fragments, there was no difference between wt and Btk −/− BMMs in the uptake of Lm upon infection. Moreover, there was no difference in the response to heat-killed Lm between wt and Btk −/− BMMs, suggesting a role for Btk in signaling pathways that are induced by intracellular Lm. Finally, Btk −/− mice displayed enhanced resistance and an increased mean survival time upon Lm infection in comparison to wt mice. This correlated with elevated IFN-γ and IL-12p70 serum levels in Btk −/− mice at day 1 after infection. Taken together, our data suggest an important regulatory role for Btk in macrophages during Lm infection.  相似文献   
4.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
5.
Abstract

Three novel nucleosides 1, 2, and 3 were prepared that contained side chains at the 2-position of adenosine. Compound 1 was shown to be the most selective A2a receptor agonist reported to date having an A1/A2 ratio of 2400. In addition, compound 1 was shown to reduce blood pressure in rats and dogs with only minimal effects on heart rate.  相似文献   
6.
Land use has greatly transformed Earth's surface. While spatial reconstructions of how the extent of land cover and land-use types have changed during the last century are available, much less information exists about changes in land-use intensity. In particular, global reconstructions that consistently cover land-use intensity across land-use types and ecosystems are missing. We, therefore, lack understanding of how changes in land-use intensity interfere with the natural processes in land systems. To address this research gap, we map land-cover and land-use intensity changes between 1910 and 2010 for 9 points in time. We rely on the indicator framework of human appropriation of net primary production (HANPP) to quantify and map land-use-induced alterations of the carbon flows in ecosystems. We find that, while at the global aggregate level HANPP growth slowed down during the century, the spatial dynamics of changes in HANPP were increasing, with the highest change rates observed in the most recent past. Across all biomes, the importance of changes in land-use areas has declined, with the exception of the tropical biomes. In contrast, increases in land-use intensity became the most important driver of HANPP across all biomes and settings. We conducted uncertainty analyses by modulating input data and assumptions, which indicate that the spatial patterns of land use and potential net primary production are the most critical factors, while spatial allocation rules and uncertainties in overall harvest values play a smaller role. Highlighting the increasing role of land-use intensity compared to changes in the areal extent of land uses, our study supports calls for better integration of the intensity dimension into global analyses and models. On top of that, we provide important empirical input for further analyses of the sustainability of the global land system.  相似文献   
7.
8.
9.
We describe the purification and characterization of a 16S U5 snRNP from the yeast Saccharomyces cerevisiae and the identification of its proteins. In contrast to the human 20S U5 snRNP, it has a comparatively simple protein composition. In addition to the Sm core proteins, it contains only two of the U5 snRNP specific proteins, Prp8p and Snu114p. Interestingly, the 16S U5 snRNP contains also Aar2p, a protein that was previously implicated in splicing of the two introns of the MATa1 pre-mRNA. Here, we demonstrate that Aar2p is essential and required for in vivo splicing of U3 precursors. However, it is not required for splicing in vitro. Aar2p is associated exclusively with this simple form of the U5 snRNP (Aar2-U5), but not with the [U4/U6.U5] tri-snRNP or spliceosomal complexes. Consistent with this, we show that depletion of Aar2p interferes with later rounds of splicing, suggesting that it has an effect when splicing depends on snRNP recycling. Remarkably, the Aar2-U5 snRNP is invariably coisolated with the U1 snRNP regardless of the purification protocol used. This is consistent with the previously suggested cooperation between the U1 and U5 snRNPs prior to the catalytic steps of splicing. Electron microscopy of the Aar2-U5 snRNP revealed that, despite the comparatively simple protein composition, the yeast Aar2-U5 snRNP appears structurally similar to the human 20S U5 snRNP. Thus, the basic structural scaffold of the Aar2-U5 snRNP seems to be essentially determined by Prp8p, Snu114p, and the Sm proteins.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号