首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The Selectide process is a random synthetic chemical library method based on the one-bead one-peptide (structure) concept. A "split-synthesis" method is used to generate huge random libraries (106-108). At the end of the synthesis, each bead expresses only one chemical entity (e.g., peptide). The whole library is then tested simultaneously for binding to a specific acceptor molecule of biologic interest. The ligand bead that interacts specifically with the acceptor molecule is then isolated for structure determination. Once a binding motif is identified, a secondary library (based on the motif of the primary screen) is generated and screened under a more stringent condition to identify leads of higher affinity. This process can be applied to both peptide and nonpeptide (small organic) libraries. In the case of nonsequencable structure libraries, the coding principle has to be applied for structure elucidation of positively reacting beads. Coding peptide is synthesized in parallel to the screening structure, and classical Edman degradation (one or multiple-step) is used for structural analysis. To exclude the possibility of interaction of the macromolecular target (e.g., receptor, enzyme, antibody) with the coding structure, a synthetic technique for segregation of the surface (screening structure) and the interior (coding structure) of the beads was developed. The one-bead one-structure process is invaluable in drug discovery for lead identification as well as further optimization of the initial leads. It also serves as an important research tool for molecular recognition.  相似文献   

2.
A general method was developed for the discovery of protease‐activated binding ligands, or proligands, from combinatorial prodomain libraries displayed on the surface of E. coli. Peptide libraries of candidate prodomains were fused with a matrix metalloprotease‐2 substrate linker to a vascular endothelial growth factor‐binding peptide and sorted using a two‐stage flow cytometry screening procedure to isolate proligands that required protease treatment for binding activity. Prodomains that imparted protease‐mediated switching activity were identified after three sorting cycles using two unique library design strategies. The best performing proligand exhibited a 100‐fold improvement in apparent binding affinity after exposure to protease. This method may prove useful for developing therapeutic and diagnostic ligands with improved systemic targeting specificity.  相似文献   

3.
4.
The screening of diverse libraries of small molecules created by combinatorial synthetic methods is a recent development which has the potential to accelerate the identification of lead compounds in drug discovery. We have developed a direct and rapid method to identify lead compounds in libraries involving affinity selection and mass spectrometry. In our strategy, the receptor or target molecule of interest is used to isolate the active components from the library physically, followed by direct structural identification of the active compounds bound to the target molecule by mass spectrometry. In a drug design strategy, structurally diverse libraries can be used for the initial identification of lead compounds. Once lead compounds have been identified, libraries containing compounds chemically similar to the lead compound can be generated and used to optimize the binding characteristics. These strategies have also been adopted for more detailed studies of protein–ligand interactions.  相似文献   

5.
We recently reported the use of a biphasic approach to generate topologically segregated bilayer beads. In generating 'one-bead one-compound' (OBOC) combinatorial libraries, novel encoding methods have been applied to these beads such as the testing library compound and the coding tags residing on the outer layer and inner core of each bead, respectively. In this report, we further exploit these bilayer beads by preparing target bead-libraries with low concentration of random peptides on the outer layer, and full substitution of coding peptides in the bead interior. The low concentration of peptide on the bead surface enables us to greatly increase the stringency of screening so that higher affinity ligands can easily be identified. Full substitution of the inner core of the beads enables us to have enough coding peptides inside the bead for direct microsequencing with Edman chemistry. The biphasic approach of preparing bilayer beads can be carried out at any point during the library construction. Therefore, the nonsequencable or fixed structures of the peptides can be bypassed in the coding tags. As a result, peptide libraries that otherwise cannot be sequenced can now be sequenced, and peptide segments with fixed residues within the libraries can be bypassed so that the microsequencing time can be significantly shortened. Furthermore, peptides with a branch of random sequence in the middle of a fixed peptide chain can be encoded with just the random sequence in the bead interior. We have successfully applied these novel OBOC library concepts in the optimization of cell-surface ligands for a human T-cell leukemia, Jurkat, cell line.  相似文献   

6.
Recent years have seen progress in druggability simulations, that is, molecular dynamics simulations of target proteins in solutions containing drug‐like probe molecules to characterize their drug‐binding abilities, if any. An important consecutive step is to analyze the trajectories to construct pharmacophore models (PMs) to use for virtual screening of libraries of small molecules. While considerable success has been observed in this type of computer‐aided drug discovery, a systematic tool encompassing multiple steps from druggability simulations to pharmacophore modeling, to identifying hits by virtual screening of libraries of compounds, has been lacking. We address this need here by developing a new tool, Pharmmaker, building on the DruGUI module of our ProDy application programming interface. Pharmmaker is composed of a suite of steps: (Step 1) identification of high affinity residues for each probe molecule type; (Step 2) selecting high affinity residues and hot spots in the vicinity of sites identified by DruGUI; (Step 3) ranking of the interactions between high affinity residues and specific probes; (Step 4) obtaining probe binding poses and corresponding protein conformations by collecting top‐ranked snapshots; and (Step 5) using those snapshots for constructing PMs. The PMs are then used as filters for identifying hits in structure‐based virtual screening. Pharmmaker, accessible online at http://prody.csb.pitt.edu/pharmmaker , can be used in conjunction with other tools available in ProDy.  相似文献   

7.
A fast and inexpensive strategy for the identification of peptide ligands by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of peptide beads screened from one bead-one peptide combinatorial libraries is herein described. Streptavidin was used as the model protein. A combinatorial library of 6561 peptides was synthesized on ChemMatrix resin by the divide-couple-recombine method. 4-Hydroxymethylbenzoic acid was used as the linker and five residues of Gly were incorporated at the C termini to increase the final peptide molecular weight. Positive control peptides with the HPQ motif and negative control peptides without the HPQ motif evidenced that the linker and the five residues of Gly have neither impaired the specific binding nor facilitated unspecific binding. After screening the library, positive beads were isolated and washed with 8M guanidine hydrochloride. The beads were sliced into two or four pieces, deposited onto the stainless steel MALDI sample plate, and treated with ammonia vapor to release the peptides. In addition, 26 beads picked at random from the library were subjected to the same treatment. All samples were analyzed by MALDI-TOF-MS and the peptides were unambiguously identified with very good reproducibility between the bead pieces, thus evidencing the good homogeneity of the bead. All sequences obtained from the screening contained HPQ.  相似文献   

8.
Combinatorial libraries employing the one-bead–one-compound technique are reviewed. Two distinguishing features characterize this technique. First, each compound is identified with a unique solid support, enabling facile segregation of active compounds. Second, the identity of a compound on a positively reacting bead is elucidated only after its biological relevance is established. Direct methods of structure identification (Edman degradation and mass spectroscopy) as well as indirect “coding” methods facilitating the synthesis and screening of nonpeptide libraries are discussed. Nonpeptide and “scaffold” libraries, together with a new approach for the discovery of a pentide binding motif using a “library of libraries,” are also discussed. In addition, the ability to use combinatorial libraries to optimize initially discovered leads is illustrated with examples using peptide libraries. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Phage‐displayed synthetic antibody (Ab) repertoires have become a major source of affinity reagents for basic and clinical research. Specific Abs identified from such libraries are often screened as fragments antigen binding (Fabs) produced in bacteria, and those with desired biochemical characteristics are reformatted for production as full‐length immunoglobulin G (IgG) in mammalian cells. The conversion of Fabs to IgGs is a cumbersome and often rate‐limiting step in the development of Abs. Moreover, biochemical properties required for lead IgG development are not always shared by the Fabs, and these issues are not uncovered until a significant effort has been spent on Abs that ultimately will not be useful. Thus, there is a need for simple and rapid techniques to convert phage‐displayed Fabs to IgGs at an early stage of the Ab screening process. We report the generation of a highly diverse phage‐displayed synthetic single‐chain Fab (scFab) library, in which the light and heavy chains were tethered with an optimized linker. Following selection, pools of scFabs were converted to single‐chain IgGs (scIgGs) en masse, enabling facile screening of hundreds of phage‐derived scIgGs. We show that this approach can be used to rapidly screen for and select scIgGs that target cell‐surface receptors, and scIgGs behave the same as conventional IgGs.  相似文献   

10.
The authors describe the discovery of a new class of inhibitors to an essential Streptococcus pneumoniae cell wall biosyn-thesis enzyme, MurF, by a novel affinity screening method. The strategy involved screening very large mixtures of diverse small organic molecules against the protein target on the basis of equilibrium binding, followed by iterative ultrafiltration steps and ligand identification by mass spectrometry. Hits from any affinity-based screening method often can be relatively nonselective ligands, sometimes referred to as "nuisance" or "promiscuous" compounds. Ligands selective in their binding affinity for the MurF target were readily identified through electronic subtraction of an empirically determined subset of promiscuous compounds in the library without subsequent selectivity panels. The complete strategy for discovery and identification of novel specific ligands can be applied to all soluble protein targets and a wide variety of ligand libraries.  相似文献   

11.
Phenotype-based drug discovery is a key strategy for small molecule drug screening, and the molecular target identification of small molecules, termed “target deconvolution,” is critical albeit challenging. In this review, we classify approaches for target deconvolution, including both direct and indirect approaches, summarize their underlying principles, and provide examples of current chemical proteomics strategies including affinity purification using compound-immobilized beads, photoaffinity labeling (PAL), cellular thermal shift assay (CETSA), and activity-based protein profiling (ABPP). Because there is no single best target deconvolution strategy, it is important to carefully select a strategy on the basis of the test compound characteristics.  相似文献   

12.
Aptamers as reagents for high-throughput screening   总被引:1,自引:0,他引:1  
Green LS  Bell C  Janjic N 《BioTechniques》2001,30(5):1094-6, 1098, 1100 passim
The identification of new drug candidates from chemical libraries is a major component of discovery research in many pharmaceutical companies. Given the large size of many conventional and combinatorial libraries and the rapid increase in the number of possible therapeutic targets, the speed with which efficient high-throughput screening (HTS) assays can be developed can be a rate-limiting step in the discovery process. We show here that aptamers, nucleic acids that bind other molecules with high affinity, can be used as versatile reagents in competition binding HTS assays to identify and optimize small-molecule ligands to protein targets. To illustrate this application, we have used labeled aptamers to platelet-derived growth factor B-chain and wheat germ agglutinin to screen two sets of potential small-molecule ligands. In both cases, binding affinities of all ligands tested (small molecules and aptamers) were strongly correlated with their inhibitory potencies in functional assays. The major advantages of using aptamers in HTS assays are speed of aptamer identification, high affinity of aptamers for protein targets, relatively large aptamer-protein interaction surfaces, and compatibility with various labeling/detection strategies. Aptamers may be particularly useful in HTS assays with protein targets that have no known binding partners such as orphan receptors. Since aptamers that bind to proteins are often specific and potent antagonists of protein function, the use of aptamers for target validation can be coupled with their subsequent use in HTS.  相似文献   

13.
14.
15.
Short cyclic peptides have a great interest in therapeutic, diagnostic and affinity chromatography applications. The screening of ‘one‐bead‐one‐peptide’ combinatorial libraries combined with mass spectrometry (MS) is an excellent tool to find peptides with affinity for any target protein. The fragmentation patterns of cyclic peptides are quite more complex than those of their linear counterparts, and the elucidation of the resulting tandem mass spectra is rather more difficult. Here, we propose a simple protocol for combinatorial cyclic libraries synthesis and ring opening before MS analysis. In this strategy, 4‐hydroxymethylbenzoic acid, which forms a benzyl ester with the first amino acid, was used as the linker. A glycolamidic ester group was incorporated after the combinatorial positions by adding glycolic acid. The library synthesis protocol consisted in the following: (i) incorporation of Fmoc‐Asp[2‐phenylisopropyl (OPp)]‐OH to Ala‐Gly‐oxymethylbenzamide‐ChemMatrix, (ii) synthesis of the combinatorial library, (iii) assembly of a glycolic acid, (iv) couple of an Ala residue in the N‐terminal, (v) removal of OPp, (vi) peptide cyclisation through side chain Asp and N‐Ala amino terminus and (vii) removal of side chain protecting groups. In order to simultaneously open the ring and release each peptide, benzyl and glycolamidic esters were cleaved with ammonia. Peptide sequences could be deduced from the tandem mass spectra of each single bead evaluated. The strategy herein proposed is suitable for the preparation of one‐bead‐one‐cyclic depsipeptide libraries that can be easily open for its sequencing by matrix‐assisted laser desorption/ionisation MS. It employs techniques and reagents frequently used in a broad range of laboratories without special expertise in organic synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
High-throughput fluorescent intercalator displacement (HT–FID) was adapted to the semi-automated screening of a commercial compound library containing 60,000 molecules resulting in the discovery of cytotoxic DNA-targeted agents. Although commercial libraries are routinely screened in drug discovery efforts, the DNA binding potential of the compounds they contain has largely been overlooked. HT–FID led to the rapid identification of a number of compounds for which DNA binding properties were validated through demonstration of concentration-dependent DNA binding and increased thermal melting of A/T- or G/C-rich DNA sequences. Selected compounds were assayed further for cell proliferation inhibition in glioblastoma cells. Seven distinct compounds emerged from this screening procedure that represent structures unknown previously to be capable of targeting DNA leading to cell death. These agents may represent structures worthy of further modification to optimally explore their potential as cytotoxic anti-cancer agents. In addition, the general screening strategy described may find broader impact toward the rapid discovery of DNA targeted agents with biological activity.  相似文献   

17.
One bead one compound (OBOC) libraries can be screened against serum samples to identify ligands to antibodies in this mixture. In this protocol, hit beads are identified by staining with a fluorescent labeled secondary antibody. When screens are conducted against two different sets of serum, antibodies, and ligands to them, can be discovered that distinguish the two populations. The application of DNA-encoding technology to OBOC libraries has allowed the use of 10?µm beads for library preparation and screening, which pass through a standard flow cytometer, allowing the fluorescent hit beads to be separated from beads displaying non-ligands easily. An important issue in using this approach for the discovery of antibody biomarkers is its analytical sensitivity. In other words, how abundant must an IgG be to allow it to be pulled out of serum in an unbiased screen using a flow cytometer? We report here a model study in which monoclonal antibodies with known ligands of varying affinities are doped into serum. We find that for antibody ligands typical of what one isolates from an unbiased combinatorial library, the target antibody must be present at 10–50?nM. True antigens, which bind with significantly higher affinity, can detect much less abundant serum antibodies.  相似文献   

18.
Two critical steps in drug development are 1) the discovery of molecules that have the desired effects on a target, and 2) the optimization of such molecules into lead compounds with the required potency and pharmacokinetic properties for translation. DNA-encoded chemical libraries (DECLs) can nowadays yield hits with unprecedented ease, and lead-optimization is becoming the limiting step. Here we integrate DECL screening with structure-based computational methods to streamline the development of lead compounds. The presented workflow consists of enumerating a virtual combinatorial library (VCL) derived from a DECL screening hit and using computational binding prediction to identify molecules with enhanced properties relative to the original DECL hit. As proof-of-concept demonstration, we applied this approach to identify an inhibitor of PARP10 that is more potent and druglike than the original DECL screening hit.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号