首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
水通道或水通道蛋白是水分运动的主要通道。以RD2 8cDNA和RD2 8抗体为探针证明了蚕豆 (ViciafabaL .)保卫细胞中存在水通道蛋白 ,并以气孔运动为指标 ,结合抗体和抑制剂处理证明水通道蛋白是水分运动的主要通道。研究表明编码质膜水通道蛋白的RD2 8转录体在叶片保卫细胞、叶肉细胞和维管束中高表达 ,尤以保卫细胞中最多 ;荧光免疫染色和Confocal显微镜观察表明 ,RD2 8抗体反应主要位于保卫细胞质膜。进一步采用RD2 8抗体和水通道蛋白抑制剂———HgCl2 (2 5 μmol L) 处理可抑制壳梭孢素 (FC)、光照诱导的气孔开放和原生质体体积膨胀以及ABA诱导的气孔关闭 ,但这种抑制作用可以被水通道抑制剂的逆转剂 β_巯基乙醇 (ME)逆转。表明蚕豆保卫细胞中存在水通道蛋白并参与蚕豆保卫细胞的运动过程。  相似文献   

2.
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H2O2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索.结果显示,光下外源NO供体硝普钠(SNP)和H2O2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂NG-氮-L-精氨酸-甲酯(L-NAME)和H2O2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H2O2水平比暗中明显降低.上述结果表明,光/暗通过影响保卫细胞NO和H2O2的水平调控气孔运动.研究还发现,光下H2O2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H2O2的这些效应;光下SNP既诱导H2O2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转.这些结果表明,NO和H2O2在生成及效应上均存在明显的相互作用.另外,L-NAME显著逆转暗和光下H2O2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H2O2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭.  相似文献   

3.
以蚕豆(Vicia fabaL.)气孔保卫细胞为材料,研究了酪氨酸蛋白磷酸酶(protein tyrosine phosphatases,PTPases)的抑制剂氧化苯胂(phenylarsine oxide,PAO)、钒酸钠(NaVO3)和Zn2 对外源一氧化氮(NO)调控蚕豆气孔运动的影响。结果表明,NO供体硝普钠(sodium nitroprusside,SNP)能诱导蚕豆气孔关闭,其效应在0.001~0.1 mmol.L-1浓度范围内随着SNP浓度的增大而增强;不同浓度的PAO、NaVO3和Zn2 对光诱导的气孔张开几乎没有影响,但都可以抑制黑暗或SNP诱导的气孔关闭,表明酪氨酸蛋白磷酸酶参与NO调控蚕豆气孔运动的信号转导过程,在NO调控蚕豆气孔运动中起着重要的作用。  相似文献   

4.
 用不同浓度HgCl2、LaCl3和TEACl (Tetraethylammonium chloride)处理蚕豆(Vicia faba)叶片下表皮条,发现HgCl2能显著抑制气孔开闭,Ca2+通道阻塞剂LaCl3或K+通道阻塞剂TEACl处理也都有一定程度的抑制。三者的作用效果HgCl2>>LaCl3>TEACl。用HgCl2+LaCl3、HgCl2+TEACl或HgCl2+LaCl3+TEACl处理,则气孔开闭运动几乎完全被抑制。表明:蚕豆气孔运动中,保卫细胞胀缩主要是水通道直接参与保卫细胞与叶肉细胞间水流的调节引起的,离子通道起间接次要作用,二者共同引起保卫细胞体积变化而导致气孔开闭。  相似文献   

5.
NO和H2O2在光/暗调控蚕豆气孔运动中的作用及其相互关系   总被引:10,自引:0,他引:10  
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H_2O_2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索。结果显示,光下外源NO供体硝普钠(SNP)和H_2O_2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂N~G-氮-L-精氨酸-甲酯(L-NAME)和H_2O_2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H_2O_2水平比暗中明显降低。上述结果表明,光/暗通过影响保卫细胞NO和H_2O_2的水平调控气孔运动。研究还发现,光下H_2O_2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H_2O_2的这些效应;光下SNP既诱导H_2O_2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转。这些结果表明,NO和H_2O_2在生成及效应上均存在明显的相互作用。另外,L-NAME显著逆转暗和光下H_2O_2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H_2O_2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭。  相似文献   

6.
UV-B辐射对蚕豆叶片气孔运动的间接效应与NO和H2O2有关   总被引:1,自引:1,他引:0  
0.2 W.m-2的UV-B辐射不仅能诱导整体蚕豆叶片气孔导度和开度的显著降低,而且能明显降低蚕豆叶肉光合活性,但该强度的UV-B辐射却不能明显影响离体表皮条的气孔开度.说明0.2W.m-2的UV-B主要通过间接途径调控了蚕豆叶片气孔运动.借助药理学试验和激光扫描共聚焦显微镜技术,进一步对该间接效应过程中是否有NO和H2O2的参与进行了探讨.结果显示:NO专一性清除剂cPT IO和一氧化氮合酶(NO S)抑制剂L-NAM E均能有效地抑制UV-B辐射诱导的叶片气孔关闭和保卫细胞内源NO水平的升高;H2O2清除剂抗坏血酸(A SC)和过氧化氢酶(CAT)也能有效地逆转UV-B辐射诱导的气孔关闭和保卫细胞内源H2O2含量的升高.另外,外源NO或H2O2处理也能有效地诱导叶片气孔关闭.结果说明0.2W.m-2的UV-B辐射对蚕豆叶片气孔关闭的间接诱导与NO和H2O2有关.  相似文献   

7.
UV-B辐射作为一种重要的环境信号影响着植物的生长与发育,它能够调控气孔运动和诱导乙烯产生.该试验利用乙烯生物合成抑制剂和乙烯受体抑制剂处理蚕豆叶片表皮条,结合气孔开度分析和乙烯释放量测定,研究乙烯在UV-B辐射调控表皮条气孔运动中的作用.结果发现,将蚕豆叶片表皮条置于0.8 W·m-2的UV-B辐射下1~4 h,乙烯生成和气孔关闭均被显著诱导,且乙烯释放峰先于气孔关闭的起始;乙烯生物合成抑制剂和乙烯受体抑制剂处理均能显著逆转UV-B辐射诱导的气孔关闭;外源乙烯处理也能模拟UV-B辐射的效应诱导可见光下蚕豆表皮条的气孔关闭.可见,乙烯介导了UV-B辐射诱导的蚕豆气孔关闭.  相似文献   

8.
H+参与茉莉酸调控蚕豆气孔运动的信号转导   总被引:2,自引:0,他引:2  
以BCECF-AM为pH的荧光探针,结合激光共聚焦扫描显微技术,研究H 可能参与茉莉酸(JA)调控气孔运动信号转导途径的结果表明,0.1~100μmol·L~(-1)浓度的(-)JA可诱导蚕豆气孔关闭,在引起气孔孔径改变之前,(-)JA能引起蚕豆保卫细胞胞质的碱化;而(±)JA可诱导气孔适当开放,它未引起蚕豆保卫细胞胞质中pH的明显改变。药理学实验证明,质膜上质子泵的抑制剂矾酸钠能减弱(-)JA诱导气孔关闭的作用;而质膜上质子泵的激活剂壳梭孢菌素(fusicoccin)基本上未改变(±)JA的作用趋势。(-)JA和(±)JA刺激保卫细胞胞质Ca2 变化则表现出不同趋势。说明不同异构体形式的JA在调节气孔运动中的作用和信号转导途径有所不同。  相似文献   

9.
以蚕豆(Vicia fabaL.)为材料,采用表皮条生物学分析技术、远红外成像技术以及电生理膜片钳技术,研究逆境信号脱落酸(ABA)和蓝光信号对蚕豆叶片表皮气孔运动及质膜K+通道的影响,以探讨ABA调节蓝光诱导的气孔开放运动的生理机制.结果表明:(1)100μmol?m-2?s-1蓝光能显著诱导气孔开放,该效应可被ABA以浓度依赖的方式抑制,并以10μmol?L-1ABA抑制效应最为明显.(2)100μmol?m-2?s-1蓝光处理能明显促使蚕豆叶面温度下降,而10μmol?L-1ABA可显著阻止蓝光诱导的蚕豆叶面温度下降.(3)100μmol?m-2?s-1蓝光可明显激活保卫细胞质膜内向K+通道,处理5 min后内向K+电流增加58%;对于1和10μmol?L-1ABA预处理蚕豆保卫细胞原生质体,在蓝光处理5 min后其内向K+电流增加值分别被抑制25%和51%,但10μmol?L-1ABA并不明显抑制壳梭孢菌素(质膜H+-ATP酶永久性激活剂)诱导的保卫细胞内向K+电流上升.研究发现,逆境信号ABA可能主要通过抑制蓝光信号转导中质膜H+-ATP酶上游位点,阻断蓝光激活的保卫细胞质膜内向K+通道,抑制蓝光诱...  相似文献   

10.
氧化信号参与了许多生理过程的调控。用膜片钳和激光共聚焦显微镜,采用可以产生O2^ 的甲基紫精处理蚕豆(Vicia faba L)保卫细胞,测定了O2^ 对气孔运动调节过程中胞质Ca^2 离子浓度和细胞质膜K^ 通道活性的变化,结果表明甲基紫精可以促进气孔的关闭,乙二醇四乙酸酯(Ethylene glycol bis(2-aminoethyl)tetra-acetic acid,EGTA)、抗坏血酸(Ascorbic acid,AsA)和过氧化物酶(Catalase,CAT)可以消除小于10^-5mol/L甲基紫精对气孔运动的影响;10^-2和10^-5mol/L的甲基紫精可使保卫细胞胞质Ca^2 浓度有不同程度提高,并伴随有钙震荡。蚕豆气孔保卫细胞质膜内向K^ 通道可被咆外甲基紫精抑制,而这种抑制和[Ca^2 ]cyt有关。推测甲基紫精产生的O2^-对蚕豆气孔运动的调节,主要是通过O2^ 诱导的胞内游离Ca^2 浓度的升高,从而抑制了通过保卫细胞质膜K^ 内向电流。  相似文献   

11.
The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.  相似文献   

12.
The regulation of stomatal movement is one of the most important signaling networks in plants.The H^ -ATPase at the plasma membrane of guard cells plays a critical role in the stomata opening, while there are some conflicting results regarding the effectiveness of the plasma membrane H^ -ATPase inhibitor,vanadate, in inhibiting stomata opening. We observed that 2 mmol/L vanadate hardly inhibited light-stimulated stomata opening in epidermal peels of Vicia faba L., but significantly inhibited dark- and ABA-induced stomatal closure. These results cannot be explained with the previous findings that H~-ATPase was inhibited by vanadate. In view of the fact that vanadate is an inhibitor of protein tyrosine phosphatases (PTPases),we investigated whether the stomatal movement regulated by vanadate is through the regulation of PTPase,As expected, phenylarsine oxide (PAO), a specific inhibitor of PTPase, has very similar effects and even more effective than vanadate. Typical PTPase activity was found in guard cells of V.faba; moreover, the phosphatase activity could be inhibited by both vanadate and PAO. These results not only provide a novel explanation for conflicting results about vanadate modulating stomatal movement, but also provide further evidence for the involvement of PTPases in modulating signal transduction of stomatal movement.  相似文献   

13.
The regulation of stomatal movement is one of the most important signaling networks in plants.The H -ATPase at the plasma membrane of guard cells plays a critical role in the stomata opening, while there are some conflicting results regarding the effectiveness of the plasma membrane H -ATPase inhibitor,vanadate, in inhibiting stomata opening. We observed that 2 mmol/L vanadate hardly inhibited light-stimulated stomata opening in epidermal peels of Viciafaba L., but significantly inhibited dark- and ABA-induced stomatal closure. These results cannot be explained with the previous findings that H -ATPase was inhibited by vanadate. In view of the fact that vanadate is an inhibitor of protein tyrosine phosphatases (PTPases),we investigated whether the stomatal movement regulated by vanadate is through the regulation of PTPase.As expected, phenylarsine oxide (PAO), a specific inhibitor of PTPase, has very similar effects and even more effective than vanadate. Typical PTPase activity was found in guard cells of V. faba; moreover, the phosphatase activity could be inhibited by both vanadate and PAO. These results not only provide a novel explanation for conflicting results about vanadate modulating stomatal movement, but also provide further evidence for the involvement of PTPases in modulating signal transduction of stomatal movement.  相似文献   

14.
Jeon BW  Hwang JU  Hwang Y  Song WY  Fu Y  Gu Y  Bao F  Cho D  Kwak JM  Yang Z  Lee Y 《The Plant cell》2008,20(1):75-87
ROP small G proteins function as molecular switches in diverse signaling processes. Here, we investigated signals that activate ROP2 in guard cells. In guard cells of Vicia faba expressing Arabidopsis thaliana constitutively active (CA) ROP2 fused to red fluorescent protein (RFP-CA-ROP2), fluorescence localized exclusively at the plasma membrane, whereas a dominant negative version of RFP-ROP2 (DN-ROP2) localized in the cytoplasm. In guard cells expressing green fluorescent protein-ROP2, the relative fluorescence intensity at the plasma membrane increased upon illumination, suggesting that light activates ROP2. Unlike previously reported light-activated factors, light-activated ROP2 inhibits rather than accelerates light-induced stomatal opening; stomata bordered by guard cells transformed with CA-rop2 opened less than controls upon light irradiation. When introduced into guard cells together with CA-ROP2, At RhoGDI1, which encodes a guanine nucleotide dissociation inhibitor, inhibited plasma membrane localization of CA-ROP2 and abolished the inhibitory effect of CA-ROP2 on light-induced stomatal opening, supporting the negative effect of active ROP2 on stomatal opening. Mutant rop2 Arabidopsis guard cells showed phenotypes similar to those of transformed V. faba guard cells; CA-rop2 stomata opened more slowly and to a lesser extent, and DN-rop2 stomata opened faster than wild-type stomata in response to light. Moreover, in rop2 knockout plants, stomata opened faster and to a greater extent than wild-type stomata in response to light. Thus, ROP2 is a light-activated negative factor that attenuates the extent of light-induced changes in stomatal aperture. The inhibition of light-induced stomatal opening by light-activated ROP2 suggests the existence of feedback regulatory mechanisms through which stomatal apertures may be finely controlled.  相似文献   

15.
Aquaporins such as the plasma membrane intrinsic proteins (PIPs) allow water to move through cell membranes and are vital for stomatal movement in plants. Despite their importance, the dynamic changes in aquaporins during water efflux and influx have not been directly observed in real time in vivo. Here, to determine which factors regulate these changes during the bidirectional translocation of water, we examined aquaporin dynamics during the stomatal immune response to the bacterial flagellin-derived peptide flg22. The Arabidopsis (Arabidopsis thaliana) aquaporin mutant pip2;1 showed defects in the flg22-induced stomatal response. Variable-angle total internal reflection fluorescence microscopy revealed that the movement dynamics and dwell times of AQ6]GFP-AtPIP2;1 in guard cells and subsidiary cells exhibited cell type-specific dependencies on flg22. The cytoskeleton, rather than the cell wall, was the major factor regulating AtPIP2;1 dynamics, although both the cytoskeleton and cell wall might form bounded domains that restrict the diffusion of AtPIP2;1 in guard cells and subsidiary cells. Finally, our analysis revealed the different roles of cortical actin and microtubules in regulating AtPIP2;1 dynamics in guard cells, as well as subsidiary cells, under various conditions. Our observations shed light on the heterogeneous mechanisms that regulate membrane protein dynamics in plants in response to pathogens.  相似文献   

16.
Gao XQ  Li CG  Wei PC  Zhang XY  Chen J  Wang XC 《Plant physiology》2005,139(3):1207-1216
Stomatal movement is important for plants to exchange gas with environment. The regulation of stomatal movement allows optimizing photosynthesis and transpiration. Changes in vacuolar volume in guard cells are known to participate in this regulation. However, little has been known about the mechanism underlying the regulation of rapid changes in guard cell vacuolar volume. Here, we report that dynamic changes in the complex vacuolar membrane system play a role in the rapid changes of vacuolar volume in Vicia faba guard cells. The guard cells contained a great number of small vacuoles and various vacuolar membrane structures when stomata closed. The small vacuoles and complex membrane systems fused with each other or with the bigger vacuoles to generate large vacuoles during stomatal opening. Conversely, the large vacuoles split into smaller vacuoles and generated many complex membrane structures in the closing stomata. Vacuole fusion inhibitor, (2s,3s)-trans-epoxy-succinyl-l-leucylamido-3-methylbutane ethyl ester, inhibited stomatal opening significantly. Furthermore, an Arabidopsis (Arabidopsis thaliana) mutation of the SGR3 gene, which has a defect in vacuolar fusion, also led to retardation of stomatal opening. All these results suggest that the dynamic changes of the tonoplast are essential for enhancing stomatal movement.  相似文献   

17.
Experiments were conducted to examine whether mercury-sensitive aquaporins facilitate photosynthetic CO(2) diffusion across the plasma membrane of leaf mesophyll cells. Discs without abaxial epidermes from Vicia faba leaflets were treated with HgCl(2), an inhibitor of aquaporins. Hydraulic conductivity of the plasma membrane of these discs, measured as the weight loss of the discs in the 1 M sorbitol solution, was inhibited by sub-mM concentrations of HgCl(2) by 70 to 80%. Photosynthetic CO(2) fixation was also inhibited by the HgCl(2) treatment in a similar concentration range. When 0.3 mM HgCl(2) solution was fed to the V. faba leaflets with intact epidermes via the transpiration stream, the rate of photosynthesis on leaf area basis (A) measured at photosynthetically active photon flux density of 700 micromol m(-2) s(-1) and at leaf temperature of 25 degrees C, decreased by about 20 to 30% at any CO(2) concentration in the intercellular spaces (C(i)). However, when CO(2) concentration in the chloroplast stroma (C(c)) was calculated from fluorescence and gas exchange data and A was plotted against C(c), A at low C(c) concentrations did not differ before and after the treatment. The conductance for CO(2) diffusion from the intercellular spaces to the chloroplast stroma (g(i)) decreased to 40 and 30% of the control value, when the leaflets were fed with 0.3 mM and 1.2 mM HgCl(2), respectively. Similar results were obtained with leaves of Phaseolus vulgaris. Although effects of HgCl(2) were not specific, the present results showed that HgCl(2) consistently lowered g(i). It is, thus, probable that the photosynthetic CO(2) uptake across the plasma membrane of the mesophyll cells is facilitated by mercury-sensitive aquaporins.  相似文献   

18.
We previously reported that the organization of microtubules (MTs) in guard cells of Vicia faba L. shows dynamic diurnal changes [Fukuda et al. (1998) Plant Cell Physiol. 39: 80]. Here, we report a method to directly extract total proteins from guard cells to investigate the biochemical changes in guard cells of Vicia faba L. during the diurnal cycle. Electrophoretic profiles of total proteins of guard cells showed distinct patterns with the time of extraction. Immunoblot analysis also demonstrated changes in alpha-tubulin and beta-tubulin contents with the diurnal cycle. Both tubulins were abundant at 6:00 h and 12:00 h but were almost undetectable at 24:00 h. Although treatment with either actinomycin D or cycloheximide at 18:00 h inhibited neither radial organization of cortical MTs nor stomatal opening, that at 6:00 h inhibited both. These results suggest that the dynamic diurnal changes in the organization of MTs in guard cells and stomatal movement of Vicia faba L. may be, at least partly, regulated by de novo synthesis and decomposition of tubulin molecules in guard cells.  相似文献   

19.
Because the epidermis ofV. faba L. leaves easily can be peeled into strips of one cell layer, we developed a simple method ofin situ hybridization using epidermal peels as a substitute for paraffin, resin and cryosections. Our method sufficiently detected the expression of broad bean aquaporin 1 in guard cells. RT-PCR revealed higher expression of aquaporins (AQPs) in guard cells compared to other leaf cell types; this indicates the importance of AQP for bulk water flow across guard cell membranes and, therefore, for stomatal movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号