首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Physiological responses to dehydration in amphibians are reasonably well documented, although little work has addressed this problem in hibernating animals. We investigated osmotic and metabolic responses to experimental manipulation of hydration state in the wood frog (Rana sylvatica), a terrestrial hibernator that encounters low environmental water potential during autumn and winter. In winter-conditioned frogs, plasma osmolality varied inversely with body water content (range 69–79%, fresh mass) primarily due to increases in sodium and chloride concentrations, as well as accumulation of glucose and urea. Decreased hydration was accompanied by a marked reduction in the resting rate of oxygen consumption, which was inversely correlated with plasma osmolality and urea concentration. In a separate experiment, resting rates of oxygen consumption in fully hydrated frogs receiving injections of saline or saline containing urea did not differ initially; however, upon dehydration, metabolic rates decreased sooner in the urea-loaded frogs than in control frogs. Our findings suggest an important role for urea, acting in concert with dehydration, in the metabolic regulation and energy conservation of hibernating R. sylvatica.  相似文献   

2.
Summary Preadult viability and developmental time at four different temperatures, heat and cold resistances of adult flies, effects of acclimatization on heat resistance, and preferred temperature of adult flies were compared between two species of Drosophila, D. virilis and D. immigrans. Four Japanese local populations were surveyed for each species. As compared with immigrans, virilis was higher in its ability to tolerate both heat and cold stresses and was viable over a broader temperature range. On the other hand, immigrans revealed a superior ability to acclimatize and a rigid preference for gradually changing thermal environment. Differences between geographical populations are remarkable for heat tolerance in virilis and cold tolerance in immigrans. In conclusion, thermal adaptation of virilis seems to be based on the high tolerance to extreme temperatures and that of immigrans mainly on the behavioural preference for viable temperatures.  相似文献   

3.
Larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae), are frequently exposed to dehydrating conditions on the Antarctic Peninsula. In this study, we examined how rates and levels of dehydration alter heat and cold tolerance and how these relate to levels of trehalose within the insect. When dehydrated, larvae tolerated cold and heat stress more effectively, although resistance to cold was more pronounced than heat resistance. Slow dehydration was more effective than rapid dehydration in increasing temperature tolerance. Severe dehydration (50% reduction in water content) caused a much greater increase in temperature tolerance than did mild dehydration (e.g. 10% water loss). Larvae severely dehydrated at a slow rate (98% RH) were more temperature tolerant than those dehydrated quickly (0 or 75% RH). These results indicate that the slower dehydration rate allows the larvae to more effectively respond to reduced water levels and that physiological adjustments to desiccation provide cross tolerance to cold and heat. Levels of trehalose increased during dehydration and are likely a major factor increasing subsequent cold and heat resistance. This hypothesis was also supported by experimental results showing that injection of trehalose enhanced resistance to temperature stress and dehydration. We conclude that changes in temperature tolerance in B. antarctica are linked to the rate and severity of dehydration and that trehalose elevation is a probable mechanism enhancing this form of cross tolerance.  相似文献   

4.
During metamorphosis, most amphibians undergo rapid shifts in their morphology that allow them to move from an aquatic to a more terrestrial existence. Two important challenges associated with this shift in habitat are the necessity to switch from an aquatic to terrestrial mode of locomotion and changes in the thermal environment. In this study, I investigated the consequences of metamorphosis to the burst swimming and running performance of the European newt Triturus cristatus to determine the nature and magnitude of any locomotor trade-offs that occur across life-history stages. In addition, I investigated whether there were any shifts in the thermal dependence of performance between life-history stages of T. cristatus to compensate for changes in their thermal environment during metamorphosis. A trade-off between swimming and running performance was detected across life-history stages, with metamorphosis resulting in a simultaneous decrease in swimming and increase in running performance. Although the terrestrial habitat of postmetamorphic stages of the newt T. cristatus experienced greater daily fluctuations in temperature than the aquatic habitat of the larval stage, no differences in thermal sensitivity of locomotor performance were detected between the larval aquatic and postmetamorphic stages. The absence of variation across life-history stages of T. cristatus may indicate that thermal sensitivity may be a conservative trait across ontogenetic stages in amphibians, but further studies are required to investigate this assertion.  相似文献   

5.
Summary The response to simultaneous temperature and dehydration stress was examined in three species of Puerto Rican frogs.Eleutherodactylus antillensis is found primarily in hot, arid grasslands at low altitudes.Eleutherodactylus portoricensis is restricted to cool, forested montane habitats above 300 m.Eleutherodactylus coqui occurs in both the lowlands and the highlands. The physiological tolerance of the frogs to temperature was measured at 20, 25, and 30°C at various levels of dehydration using an index derived from jumping performance. Although jump distance of fully hydratedE. antillensis was unaffected by temperature, this species tolerated significantly more dehydration at high temperatures than low.Eleutherodactylus portoricensis died at 30°C, but in this species both distance jumped and dehydration tolerance were unaffected by lower temperatures. Distance jumped byE. coqui increased with increasing temperature, but tolerance of dehydration remained unchanged.Eleutherodactylus coqui was less tolerant of high temperatures thanE. antillensis but more tolerant thanE. portoricensis.Abbreviations DT dehydration tolerance - SVL snout vent length  相似文献   

6.
200 YEARS OF AMPHIBIAN WATER ECONOMY: FROM ROBERT TOWNSON TO THE PRESENT   总被引:3,自引:0,他引:3  
In the 1790s, Robert Townson established the main features of the water economy of terrestrial amphibians: rapid evaporative water loss in dry surroundings,‘drinking’ by absorption of water through the abdominal skin pressed against moist substrates, and use of the urinary bladder as a reservoir from which water is reabsorbed on land. This knowledge was of little interest to the establishment in the first half of the nineteenth century of experimental physiology as a basic medical discipline, when frogs became models in the elucidation of general physiological processes. Townson's pioneer contributions to amphibian physiology were forgotten for 200 years (Jørgensen 1994 b). Durig (1901) and particularly Overton (1904) restored knowledge about amphibian water economy to the level reached by Townson, but the papers had little impact on the young science of animal physiology because they primarily aimed at elucidating the transport of fluids across membranes. Frog skin remained a model preparation in such studies throughout the century. With the establishment of terrestrial ecology early in the century, the relations of animals, including amphibians, to water became a central theme. Concurrently with comparative studies of amphibian water economy in an ecological setting, the subject proceeded as an aspect of animal osmoregulation. Adolph (1920-1930) and Rey (1937 a) established the highly dynamic nature of water balance in amphibians in water and on land. Their observations indicated functional links between environment, skin and kidneys, the nature of which remained to be explored. Thorson & Svihla (1943) reopened the ecological approach in a comparative study of the relations between amphibian habitat and tolerance of dehydration. By mid-century, the central themes of amphibian adaptations to terrestrial modes of life were re-established, except for the function of the bladder as a water-depot. During the following decades, a rich literature appeared, particularly focusing on adaptations of amphibians to arid environments. Thus, in the 1970s, it was found that ‘waterproofing’ of the highly permeable skins by means of skin secretions had evolved independently in several families of tropical arboreal frogs, and that a number of amphibians that aestivate whilst burrowed in dry soil could reduce evaporation by forming cocoons from shed strata cornea. In 1950–1970 the role of bladder urine as a water depot in terrestrial amphibians was recognized: this did not change the established view of water balance in terrestrial amphibians as alternating between dehydration on land and rehydration in response to the deficit in body water. Amphibians may, however, maintain normal water balance whether the ambient medium is water or air by means of little understood integrated mechanisms in control of cutaneous drinking behaviour, water permeability of the skin and bladder wall, and urine production.  相似文献   

7.
Variation in temperature can affect the expression of a variety of important fitness‐related behaviours, including those involved with mate attraction and selection, with consequences for the coordination of mating across variable environments. We examined how temperature influences the expression of male mating signals and female mate preferences—as well as the relationship between how male signals and female mate preferences change across temperatures (signal–preference temperature coupling)—in Enchenopa binotata treehoppers. These small plant‐feeding insects communicate using plantborne vibrations, and our field surveys indicate they experience significant natural variation in temperature during the mating season. We tested for signal–preference temperature coupling in four populations of E. binotata by manipulating temperature in a controlled laboratory environment. We measured the frequency of male signals—the trait for which females show strongest preference—and female peak preference—the signal frequency most preferred by females—across a range of biologically relevant temperatures (18°C–36°C). We found a strong effect of temperature on both male signals and female preferences, which generated signal–preference temperature coupling within each population. Even in a population in which male signals mismatched female preferences, the temperature coupling reinforces predicted directional selection across all temperatures. Additionally, we found similar thermal sensitivity in signals and preferences across populations even though populations varied in the mean frequency of male signals and female peak preference. Together, these results suggest that temperature variation should not affect the action of sexual selection via female choice, but rather should reinforce stabilizing selection in populations with signal–preference matches, and directional selection in those with signal–preference mismatches. Finally, we do not predict that thermal variation will disrupt the coordination of mating in this species by generating signal–preference mismatches at thermal extremes.  相似文献   

8.
Pinfish Lagodon rhomboides acclimation rates were determined by modelling changes in critical thermal minimum ( T crit min, ° C) estimates at set intervals following a temperature decrease of 3–4° C. The results showed that pinfish gained a total of 3·7° C of cold tolerance over a range of acclimation temperatures ( T acc, ° C) from (23–12° C), that cold tolerance increased with exposure time to the reduced temperature at all T acc, but that the rate of cold tolerance accruement (mean 0·14° C day−1) was independent of T acc. A highly significant ( P < 0·001) multivariate predictive model was generated that described the acclimation rates and thermal tolerance of pinfish exposed to reduction in water temperature: log10 T crit min= 0·41597 − 0·01704 T acc+ 0·04320 T plunge− 0·08376[log10 ( t + 1)], where T plunge is plunge temperature (° C) and t is the time (days). A comparison of the present data, with acclimation rate data for other species, suggests that factors such as latitude or geographic range may play a more important role than ambient temperature in determining cold acclimation rates in fishes.  相似文献   

9.
The phoretic behaviour of ostracods (Elpidium bromeliarum) andannelids (Dero superterrenus) that inhabit tank bromeliads was studied. Our previous field observations had shown that bromeliad ostracods can be found attached to the skin of amphibians and reptiles that move among bromeliads, probably allowing the ostracods to colonise new tanks. In this paper, we present the first record of bromeliad annelids found attached to frogs moving among bromeliads in the field. We have also enlarged the database on bromeliad ostracods engaged in phoretic association with terrestrial vertebrates in three locations in southeastern Brazil. In our laboratory experiments bromeliad annelids show a strong significant tendency to climb onto papers that had been in contact with frog skin when compared with control papers, indicating a kind of chemically oriented behaviour. Bromeliad ostracods, on the other hand, attached themselves to treated and untreated papers with same frequency. When brought into contact with various species of frogs and lizards, the bromeliad annelids and ostracods both presented preference to attach themselves to frogs, but the annelids showed a stronger preference to attach to frogs and to avoid attachment to lizards. Another experiment demonstrated that bromeliad annelids are much more prone to dehydration than are ostracods. We suggest that the chemically oriented behaviour presented by bromeliad annelids toward frogs could diminish the risk of death by dehydration during the transport among bromeliads due to the moist characteristic of frog skins.  相似文献   

10.

Temperate organisms are generally exposed to a more variable and cooler climate than tropical organisms, and are therefore expected to have broader thermal tolerance and a different thermal performance curve. This study investigated these hypotheses by comparing the thermal performance of two common tropical coral species found in the Great Barrier Reef with the two most common temperate coral species from the Mediterranean Sea. Photosynthesis rates, dark respiration rates, maximum PSII quantum yield (Fv/Fm) and electron transport rates (rETRm) were measured on coral fragments exposed to an acute temperature increase and decrease up to 5 °C above and below the average environmental seawater temperature. Dark respiration rates and Fv/Fm increased linearly with temperature, suggesting broad thermal tolerance. For photosynthesis and rETRm, the performance breadths were surprisingly similar between the tropical and temperate species. However, the thermal optimum for performance was generally below the local average temperature, and only coincided with the prevailing environmental temperature for one of the tropical species. The broad thermal tolerance for photosynthesis displayed in this study supports previous observations that corals can survive short periods of abnormally warm temperatures and suggests that corals adopt thermal generalist strategies to cope with temperature variation in the environment. Nevertheless, current mean temperatures are 10–30% above the thermal optimum for the species studied here, demonstrating that conditions are already pushing the boundaries of coral thermal tolerance.

  相似文献   

11.
Organismal performance is strongly linked to temperature because of the fundamental thermal dependence of chemical reaction rates. However, the relationship between the environment and body temperature can be altered by morphology and ecology. In particular, body size and body shape can impact thermal inertia, as high surface area to volume ratios will possess low thermal mass. Habitat type can also influence thermal physiology by altering the opportunity for thermoregulation. We studied the thermal ecology and physiology of an elongate invertebrate, the bark centipede (Scolopocryptops sexspinosus). We characterized field body temperature and environmental temperature distributions, measured thermal tolerance limits, and constructed thermal performance curves for a population in southern Georgia. We found evidence that bark centipedes behaviorally thermoregulate, despite living in sheltered microhabitats, and that performance was maintained over a broad range of temperatures (over 20 °C). However, both the thermal optimum for performance and upper thermal tolerance were much higher than mean body temperature in the field. Together, these results suggest that centipedes can thermoregulate and maintain performance over a broad range of temperatures but are sensitive to extreme temperatures. More broadly, our results suggest that wide performance breadth could be an adaptation to thermal heterogeneity in space and time for a species with low thermal inertia.  相似文献   

12.
The existence of seasonal changes in concentrations of water-soluble carbohydrates in arthropods (both freezing-tolerant and intolerant species) from Signy Island was demonstrated. Seasonal patterns of variation, imposed by seasonality of the maritime Antarctic environment, in the production of soluble carbohydrates in response to low temperatures and/or dehydration for a range of terrestrial arthropods were confirmed. The freshwater copepod Pseudoboeckellapoppei exhibited much lower levels of soluble carbohydrates, with glycerol as the main component, and smaller seasonal fluctuations relative to the four terrestrial species. The two Antarctic mites (Alaskozetes antarcticus and Gamasellus racovitzai) accumulated glycerol (as a single-component cryoprotective system), in agreement with previous work reporting increased glycerol levels and lowering of the supercooling point in A. antarcticus. In the case of G. racovitzai, increased levels of glycerol may function in a different manner. The larval dipteran Eretmoptera murphyi and the collembolan Cryptopygus antarcticus have complex multi-component cryoprotective systems involving trehalose that may be related to low temperature acclimation and dehydration. These findings are discussed in relation to published work on single and multiple cryoprotective systems, supercooling points and the involvement of dehydration as a complementary stress in overwintering insects. Received: 28 February 1997 / Accepted: 20 October 1997  相似文献   

13.
Global climate change has led to more extreme thermal events. Plants and animals harbour diverse microbial communities, which may be vital for their physiological performance and help them survive stressful climatic conditions. The extent to which microbiome communities change in response to warming or cooling may be important for predicting host performance under global change. Using a meta-analysis of 1377 microbiomes from 43 terrestrial and aquatic species, we found a decrease in the amplicon sequence variant-level microbiome phylogenetic diversity and alteration of microbiome composition under both experimental warming and cooling. Microbiome beta dispersion was not affected by temperature changes. We showed that the host habitat and experimental factors affected microbiome diversity and composition more than host biological traits. In particular, aquatic organisms—especially in marine habitats—experienced a greater depletion in microbiome diversity under cold conditions, compared to terrestrial hosts. Exposure involving a sudden long and static temperature shift was associated with microbiome diversity loss, but this reduction was attenuated by prior-experimental lab acclimation or when a ramped regime (i.e., warming) was used. Microbial differential abundance and co-occurrence network analyses revealed several potential indicator bacterial classes for hosts in heated environments and on different biome levels. Overall, our findings improve our understanding on the impact of global temperature changes on animal and plant microbiome structures across a diverse range of habitats. The next step is to link these changes to measures of host fitness, as well as microbial community functions, to determine whether microbiomes can buffer some species against a more thermally variable and extreme world.  相似文献   

14.
Despite several studies on adult amphibians, only larvae of the striped marsh frog (Limnodynastes peronii) have been reported to possess the ability to compensate for the effects of cool temperature on locomotor performance by thermal acclimation. In this study, we investigated whether this thermal acclimatory ability is shared by adult L. peronii. We exposed adult L. peronii to either 18 or 30 degrees C for 8 weeks and tested their swimming and jumping performance at six temperatures between 8 and 35 degrees C. Acute changes in temperature affected both maximum swimming and jumping performance, however there was no difference between the two treatment groups in locomotor performance between 8 and 30 degrees C. Maximum swimming velocity of both groups increased from 0.62+/-0.02 at 8 degrees C to 1.02+/-0.03 m s(-1) at 30 degrees C, while maximum jump distance increased from approximately 20 to >60 cm over the same temperature range. Although adult L. peronii acclimated to 18 degrees C failed to produce a locomotor response at 35 degrees C, this most likely reflected a change in thermal tolerance limits with acclimation rather than modifications in the locomotor system. As all adult amphibians studied to date are incapable of thermally acclimating locomotor performance, including adults of L. peronii, this acclimatory capacity appears to be absent from the adult stage of development.  相似文献   

15.
Evolutionary change of thermal traits (i.e., heat tolerance and behavioural thermoregulation) is one of the most important mechanisms exhibited by organisms to respond to global warming. However, the evolutionary potential of heat tolerance, estimated as narrow‐sense heritability, depends on the methodology employed. An alternative adaptive mechanism to buffer extreme temperatures is behavioural thermoregulation, although the association between heat tolerance and thermal preference is not clearly understood. We suspect that methodological effects associated with the duration of heat stress during thermal tolerance assays are responsible for missing this genetic association. To test this hypothesis, we estimated the heritabilities and genetic correlations for thermal traits in Drosophila subobscura, using high‐temperature static and slow ramping assays. We found that heritability for heat tolerance was higher in static assays (h2 = 0.134) than in slow ramping assays (h2 = 0.084), suggesting that fast assays may provide a more precise estimation of the genetic variation of heat tolerance. In addition, thermal preference exhibited a low heritability (h2 = 0.066), suggesting a reduced evolutionary response for this trait. We also found that the different estimates of heat tolerance and thermal preference were not genetically correlated, regardless of how heat tolerance was estimated. In conclusion, our data suggest that these thermal traits can evolve independently in this species. In agreement with previous evidence, these results indicate that methodology may have an important impact on genetic estimates of heat tolerance and that fast assays are more likely to detect the genetic component of heat tolerance.  相似文献   

16.
Temperature plays a key role in the biology of ectotherms, including anurans, which are found at higher elevations in the tropics than anywhere in the temperate zone. High elevation tropical environments are characterized by extreme daily thermal fluctuation including high daily maxima and nightly freezing. Our study investigated the contrasting operative temperatures of the anurans Telmatobius marmoratus and Pleurodema marmoratum in different environmental contexts at the same elevation and biome above 5,200 m. Telmatobius marmoratus avoids extremes of daily temperature fluctuation by utilizing thermally buffered aquatic habitat at all life stages, with minimal operative temperature variation (range: 4.6–8.0°C). Pleurodema marmoratum, in contrast, experienced operative temperatures from ?3.5 to 44°C and has one of the widest thermal breadths reported for any tropical frog, from >32°C (critical thermal maximum) to surviving freezing periods of 1 and 6 hr down to ?3.0°C. Our findings expand experimental evidence of frost tolerance in amphibians to the widespread Neotropical family Leptodactylidae, the first such evidence of frost tolerance in a tropical amphibian. Our study identifies three strategies (wide thermal tolerance breadth, use of buffered microhabitats, and behavioral thermoregulation), which allow these tropical frogs to withstand the current wide daily thermal fluctuation above 5,000 m.a.s.l. and which may help them adapt to future climatic changes. Abstract in Spanish is available with online material  相似文献   

17.
We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for ∼5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35°C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1°C, CTMin from 4.9 to 8.0°C, and CTMax from 42.0 to 44.5°C at the change-over of acclimation temperature from 20 to 35°C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25°C treatment (38.1°C) and narrowest in the 35°C treatment (36.5°C), with the 20°C treatment in between (37.2°C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.  相似文献   

18.
Understanding responses of marine algae to changing ocean temperatures requires knowledge of the impacts of elevated temperatures and the likelihood of adaptation to thermal stress. The potential for rapid evolution of thermal tolerance is dependent on the levels of heritable genetic variation in response to thermal stress within a population. Here, we use a quantitative genetic breeding design to establish whether there is a heritable variation in thermal sensitivity in two populations of a habitat‐forming intertidal macroalga, Hormosira banksii (Turner) Descaisne. Gametes from multiple parents were mixed and growth and photosynthetic performance were measured in the resulting embryos, which were incubated under control and elevated temperature (20°C and 28°C). Embryo growth was reduced at 28°C, but significant interactions between male genotype and temperature in one population indicated the presence of genetic variation in thermal sensitivity. Selection for more tolerant genotypes thus has the ability to result in the evolution of increased thermal tolerance. Furthermore, genetic correlations between embryos grown in the two temperatures were positive, indicating that those genotypes that performed well in elevated temperature also performed well in control temperature. Chlorophyll a fluorescence measurements showed a marked decrease in maximum quantum yield of photosystem II (PSII) under elevated temperature. There was an increase in the proportion of energy directed to photoinhibition (nonregulated nonphotochemical quenching) and a concomitant decrease in energy used to drive photochemistry and xanthophyll cycling (regulated nonphotochemical quenching). However, PSII performance between genotypes was similar, suggesting that thermal sensitivity is related to processes other than photosynthesis.  相似文献   

19.
The relative effect of acclimation temperature on temperature tolerance was estimated from a geometrical partitioning of the temperature tolerance polygon of a fish species into three distinct zones relative to four key tolerance temperatures. This approach yields a middle tolerance zone which is independent of acclimation temperature bounded by upper and lower acclimation dependent zones. Acclimation dependent and independent temperature tolerance zones can be quantified by either areal or linear methods. Both methods were applied to quantify the effect of acclimation temperature in 21 species of temperate fishes for which temperature tolerance polygons were available. Temperature tolerance polygon areas of these 21 species ranged from 468 to 1380°C2 and are linearly related (r 2=0.93, p<0.001) to ultimate incipient upper lethal temperatures. Although areal and linear partitioning methods yielded similar acclimation independent and dependent tolerances, estimates from the areal method incorporates additional information concerning the shape of the temperature tolerance polygon, in particular lower and upper lethal temperature plateaus. Mean combined acclimation dependent and independent tolerance areas of these 21 species were not different, indicating that acclimation effectively doubles the temperature tolerance polygon. Mean lower acclimation dependent area was nearly three times greater than mean upper acclimation dependent area, suggesting that acclimation plays a larger role in tolerance of low rather than high temperatures. Among these 21 species, temperature tolerance of brook charr and sheepshead minnow were the least and most affected by acclimation temperature, respectively.  相似文献   

20.
Global analysis of thermal tolerance and latitude in ectotherms   总被引:1,自引:0,他引:1  
A tenet of macroecology is that physiological processes of organisms are linked to large-scale geographical patterns in environmental conditions. Species at higher latitudes experience greater seasonal temperature variation and are consequently predicted to withstand greater temperature extremes. We tested for relationships between breadths of thermal tolerance in ectothermic animals and the latitude of specimen location using all available data, while accounting for habitat, hemisphere, methodological differences and taxonomic affinity. We found that thermal tolerance breadths generally increase with latitude, and do so at a greater rate in the Northern Hemisphere. In terrestrial ectotherms, upper thermal limits vary little while lower thermal limits decrease with latitude. By contrast, marine species display a coherent poleward decrease in both upper and lower thermal limits. Our findings provide comprehensive global support for hypotheses generated from studies at smaller taxonomic subsets and geographical scales. Our results further indicate differences between terrestrial and marine ectotherms in how thermal physiology varies with latitude that may relate to the degree of temperature variability experienced on land and in the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号