首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
This study focused on the acute physiological responses to saltwater exposure in juvenile shortnose sturgeon Acipenser brevirostrum. In two separate laboratory experiments, 2 year‐old A. brevirostrum were exposed to either full (32) or half‐strength (16) seawater for up to 24 h. First, oxygen consumption rates were used to estimate the metabolic costs over 24 h. Secondly, blood and muscle samples were analysed at 6, 12 and 24 h for water loss, various measures of osmoregulatory status (plasma osmolality and ions) and other standard haematological variables. Juveniles exposed to full‐strength seawater showed significant decreases in oxygen consumption rates during the 24 h exposure. Furthermore, seawater‐exposed fish had significantly increased plasma osmolality, ions (Na+ and Cl?) and a 17% decrease in total wet mass over the 24 h exposure period. To a lesser extent, increases in osmolality, ions and mass loss were observed in fish exposed to half‐strength seawater but no changes to oxygen consumption. Cortisol was also significantly increased in fish exposed to full‐strength seawater. While plasma protein was elevated following 24 h in full‐strength seawater, haemoglobin, haematocrit and plasma glucose levels did not change with increased salinity. These results imply an inability of juvenile A. brevirostrum to regulate water and ions in full‐strength seawater within 24 h. Nonetheless, no mortality occurred in any exposure, suggesting that juvenile A. brevirostrum can tolerate short periods in saline environments.  相似文献   

2.
During aestivation the metabolic rate of the Australian goldfields frog Neobatrachus wilsmorei was reduced by 80% from its standard metabolic rate. The in vitro rate of oxygen consumption of isolated muscle and skin from aestivating frogs was up to 50% lower than that of the non-aestivating frogs. This in vitro rate of oxygen consumption was maintained for 6–12 h, indicating an intrinsic metabolic depression of tissues during aestivation. Frogs became dehydrated during aestivation. Muscle, skin and liver also became dehydrated during aestivation, but brain and kidney did not. Na+ and K+ contents and extracellular space measurement for muscle indicated that ion gradients were maintained across the muscle cell membrane during aestivation. Increases in plasma concentrations of Na+ and K+ were matched with similar increases in muscle intracellular ion concentrations. Extracellular space measurements were unsuccessful in the other tissues, but K+ content in all tissues (per dry weight) was maintained during aestivation, and the concentration of plasma K+ did not increase above that which can be accounted for by dehydration, indicating that K+ gradients were maintained.Abbreviations bm body mass - DPM disintegrations per minute - dw dry weight - MR metabolic rate - vO2 rate of oxygen consumption - ww wet weight  相似文献   

3.
Renal function and osmoregulation were studied in bobwhite quail (Colinus virginianus) raised with unrestricted water (chronically unrestricted group) or restricted water (chronically restricted group). There was no difference in urine concentrating ability between adult and juvenile (3.5 or 7.5 week-old) quail. A filtration marker (polyethylene glycol) was infused into adult quail via osmotic minipumps and responses to the following regimens studied: ad libitum water intake, short-term (4-day) water restriction, and acute (1-day) dehydration (withdrawal of all drinking water). Chronically restricted quail had higher urine-to-plasma ratios of polyethylene glycol and lower urine flow rates during short-term restriction. A greater proportion of the reduction in urine flow rate during dehydration was attributable to enhanced tubular reabsorption, rather than reduced rates of filtration, in chronically restricted than in chronically unrestricted birds. Chronically restricted birds also had higher maximum urine-to-plasma ratios of polyethylene glycol (but not higher urine osmolality). These differences occurred in the face of arginine vasotocin concentrations that were not different in the two groups of birds (approximately 15 pg·ml-1 during hydration, and 45 pg·ml-1 during water restriction or dehydration). These observations suggest that chronically restricted quail have an enhanced responsiveness of tubular reabsorption to dehydration, a finding consistent with previous observations of tubule hypertrophy and hyperplasia in these birds (Goldstein and Ellis 1991). Despite this, no difference was found in medullary cAMP levels, either basal or arginine vastotocin-or forskolin-stimulated, in the two groups. When given water ad libitum, chronically restricted quail drank copiously (more than two times the drinking rate of chronically unrestricted birds rehydrating from acute dehydration or short-term water restriction), but glomerular filtration rate, hematocrit, and plasma osmolality did not differ in the two groups under this condition; chronically restricted quail excreted the excess water consumed during rehydration in a copious urine accomplished by reduced tubular water reabsorption.Abbreviations ADH antidiuretic hormone - AVT arginine vasotocin - mb body mass - cAMP cyclic adenosine-monophosphate - DEH birds raised with restricted water intake - dpm decays per minute - ECF extracellular fluid - ECFV extracellular fluid volume - E PEG total rate of polyethylene glycol excretion - GFR glomerular filtration rate - Hct hematocrit - HYD birds raised with unrestricted water intake - PEG polyethylene glycol - P osm plasma osmolality - P PEG plasma concentration of polyethylene glycol - U PEG urine concentration of polyethylene glycol - (U/P)PEG urine-to-plasma ratio concentration of polycthylene glycol - V urine flow rate  相似文献   

4.
We examined the metabolic responses of the South American frog, Ceratophrys ornata, to laboratory-induced estivation. Whole-animal and mass-specific oxygen consumption rates (VO2) did not change during fasting or 56 days of estivation, despite observing significant decreases in body mass. The maintenance of mass-specific metabolic rate at routine levels during estivation suggests that metabolic rate suppression is not a major response to estivation in this species. There was a significant decline in liver glycogen and a loss of adipose tissue mass during estivation, suggesting that both carbohydrate and lipid pathways are used to fuel metabolism during estivation. The activity of pyruvate dehydrogenase, an important regulator of carbohydrate oxidation, and carnitine palmitoyltransferase and 3-hydroxyacyl-CoA dehydrogenase, regulators of lipid oxidation, showed no significant change in activity in liver, heart, and muscle between estivating and active frogs. There was an increase in plasma osmolality, which is characteristic of estivating animals. Overall, our metabolic analysis of estivation in C. ornata indicates that this species does not employ a dramatic suppression metabolic rate to survive dehydration stress and that both endogenous carbohydrates and lipids are used as metabolic fuels.  相似文献   

5.
Plasma prolactin (PRL) concentrations, osmolality, water consumption, feed intake, urine excretion, and fecal water output were determined in twelve steers of 3 breeds exposed to 5 feed and water regimes. Breed differences were found in water intake and plasma PRL concentrations when feed and water were ad lib., however, during any of the other 4 treatments, responses were similar between breeds. During dehydration and feed restriction, water intake, urine, fecal water, and plasma prolactin decreased; however, during hydration and refeeding such changes were not as clearly related. No consistent relationships between plasma prolactin and osmolality were found. Data suggests that PRL's role in fluid regulation in the bovine is most likely associated with alterations in renal hemodynamics rather than by changes in plasma osmolality.  相似文献   

6.
The present work aimed to contribute to the understanding of the adaptation of the glycolytic pathway in tissues of frog Rana ridibunda and land snail species Helix lucorum during seasonal hibernation. Moreover responses of glycolytic enzymes from cold acclimated R. ridibunda and H. lucorum were studied as well. The drop in Po2 in the blood of hibernated frogs and land snails indicated lower oxygen consumption and a decrease in their metabolic rate. The activities of glycolytic enzymes indicated that hibernation had a differential effect on the glycolyis in the two species studied and also in the tissues of the same species. The activity of l-LDH decreased significantly in the skeletal muscle and heart of hibernated R. ridibunda indicating a low glycolytic potential. Similar biochemical responses were observed in the same tissues during cold acclimation. The continuous increase in the activities of glycolytic enzymes studied, except for HK, might indicate a compensation for the impacts of low temperature on the enzymatic activities. In contrast to R. ridibunda, the activities of the enzymes increased and remained at higher levels than those of the prehibernation controls indicating maintenance of glycolytic potential in the tissues of hibernating land snails.  相似文献   

7.
The effects of whole body dehydration (up to 40% of total body water lost) or anoxia exposure (up to 2 days under N2 gas) at 5 °C on tissue levels of adenosine 3′–5′ cyclic monophosphate (cAMP) and the percentage of cAMP-dependent protein kinase present as the free catalytic subunit (PKAc), as well as the levels of the protein kinase C (PKC) second messenger, inositol 1,4,5-trisphosphate (IP3), were assessed in two anurans, the freeze-tolerant wood frog, Rana sylvatica, and the freeze-intolerant leopard frog, Rana pipiens. Dehydration of wood frogs resulted in a rapid elevation of liver cAMP and PKAc; cAMP was 3.4-fold greater than control values in animals that had lost 5% of total body water, whereas PKAc was elevated threefold in 20% dehydrated frogs. These results indicate protein kinase A mediation of the liver glycogenolysis and hyperglycemia that is induced by dehydration in this species. Skeletal muscle PKAc content also rose with dehydration but neither cAMP nor PKAc was affected by dehydration in leopard frog tissues. Anoxia exposure had different effects on signal transduction systems. PKAc was elevated after 1 h anoxia in R. sylvatica brain and was sustained over time but the enzyme was unaffected in other organs; by contrast, R. pipiens showed variable responses by PKAc to anoxia in three organs. Both species showed rapid (within 30 min) and large (3 to 7.8-fold) increases in IP3 in liver of anoxic frogs that decreased slowly with continued anoxia. IP3 also increased quickly in heart of anoxia-exposed wood frogs. This suggests that PKC may mediate various metabolic adjustments that promote hypoxia/anoxia resistance such as coordinating metabolic rate depression. A progressive rise in liver IP3 during dehydration in wood frogs (reaching fourfold higher than controls in 40% dehydrated animals) may also mediate similar hypoxia resistance adaptations under this stress since anurans experience progressive hypoxia due to increased blood viscosity when water loss reaches high values. The patterns of second messenger and PKAc changes in wood frog liver during dehydration closely parallel the changes seen in these same parameters during natural freezing suggesting that the freeze tolerance of selected terrestrially hibernating anurans may have evolved out of various anuran mechanisms of dehydration resistance. Accepted: 2 January 1997  相似文献   

8.
It is well established that forming a cocoon, for frog species capable of doing so, markedly reduces evaporative water loss; however, the capacity of cocooned frogs to maintain hydration during extended estivation is not well understood. The combined effects of long-term estivation and water loss were examined in the cocoon-forming species Cyclorana platycephala by assessing the hydration state of the frogs throughout a 15-mo estivation period. Frogs lost mass throughout the 15-mo period to a maximum of 36%+/-6.5% of their initial standard mass. Plasma osmolality reached maximal levels by the ninth month of estivation at 487 mOsm kg(-1) and then remained stable to the fifteenth month of estivation. Urine osmolality continued to increase to the fifteenth month of estivation, at which point plasma and urine concentrations were isosmotic. The use of bladder water to counter losses from circulation was indicated by the relatively slow rate of increase in plasma osmolality with mass loss and the progressive increase in urine osmolality. For estivating frogs, evidence was found for a possible threshold relationship between plasma osmolality and plasma arginine vasotocin (AVT) concentration. After estivation, plasma AVT concentrations decreased markedly after 15-mo estivators were placed in water for 2 h, suggesting that high levels of AVT may not be integral to rapid rehydration in this species.  相似文献   

9.
Intertidal hermit crabs were stepwise acclimated to 10, 20, and 30‰ salinity (S) and 21 ± 1 °C. Hemolymph osmolality, sodium, chloride, and magnesium were isosmotic (isoionic) to ambient sea water at 30‰ and hyperosmotic (hyperionic) at 20 and 10‰ S, while hemolymph potassium was significantly hyperionic in all acclimation salinities. Total body water did not differ significantly at any acclimation salinity. Oxygen uptake rates were higher in summer-than winter-adapted crabs. No salinity effect on oxygen consumption occurred in winter-adapted individuals. Summer-adapted, 30‰ acclimated crabs had a significantly lower oxygen consumption rate than those acclimated 10 and 20‰ S. Crabs exposed to 30 10 30‰ and 10 30 10‰ semidiurnal (12 h) and diurnal (24.8 h) fluctuating salinity regimes showed variable osmoregulatory and respiratory responses. Hemolymph osmolality followed the osmolality of the fluctuating ambient sea water in all cases, but was regulated hyperosmotically. Hemolymph sodium, chloride, and magnesium concentrations were similar to hemolymph osmolality changes. Sodium levels fluctuated the least. Hemolymph potassium was regulated hyperionically during all fluctuation patters, but corresponded to sea water potassium only under diurnal conditions. The osmoregulatory ability of Clibanarius vittatus (Bosc) resembles that reported for several euryhaline brachyuran species. The time course of normalized oxygen consumption rate changed inversely with salinity under semidiurnal and diurnal 10 30 10‰ S fluctuations. Patterns of 30 10 30‰ S cycles had no effect on oxygen consumption rate time course changes. The average hourly oxygen consumption rates during both semidiurnal fluctuations were significantly lower than respective control rates, but no statistical difference was observed under diurnal conditions.  相似文献   

10.
The effects of dehydration and hemorrhage on plasma ionic, osmotic, and antidiuretic hormone (arginine vasotocin) concentrations and of hemorrhage on salt gland secretion and glomerular filtration rate were evaluated in glaucous-winged gulls, Larus glaucescens. Dehydration for 24 h did not affect plasma ionic, osmotic or arginine vasotocin concentrations; 72 h dehydration significantly elevated plasma osmolality, plasma sodium and chloride concentrations, and plasma arginine vasotocin concentration, but did not affect plasma potassium concentration. Constant infusion of 0.8 mol·l-1 NaCl increased plasma arginine vasotocin concentration and produced salt gland secretion in seven gulls; four secreted well, while three secreted less well. Removal of 20% blood volume during saline infusion immediately reduced (P<0.001) salt gland secretion rate in all gulls. After bleeding, good secretors maintained glomerular filtration rate and urine flow rate; the poorer secretors increased glomerular filtration rate and became diuretic. Blood replacement returned salt gland secretion rate to the prebleeding level (P<0.05) without affecting salt gland secretions sodium concentration in gulls which secreted well, but did not restimulate salt gland secretion in gulls which secreted poorly. Reinfusion of blood had no effect on glomerular filtration rate. Bleeding and blood replacement did not affect plasma arginine vasotocin concentration.Abbreviations AVT arginine vasotocin - ECF extracellular fluid - ECFV extracellular fluid volume - EDTA ethylenediaminetetra-acetate - EWL evaporative water loss - GFR glomerular filtration rate - Hct hematocrit - LB large blood sample - [Na+]pl plasma sodium concentration - Osmpl plasma osmolality - PEG polyethylene glycol - RH relative humidity - RIA radioimmunoassay - SB small blood sample - SGS salt gland secretion - T a ambient temperature - TFA trifluoroacetic acid - UFR urine flow rate  相似文献   

11.
Several species of arboreal frogs secrete lipids from cutaneous glands and wipe these secretions over the body surfaces to reduce evaporative water losses. Following wiping, frogs become immobile in water-conserving postures, and some have suggested they are torpid. Here we report wiping behaviors and the physiological correlates of immobile postures in the arboreal monkey frog Phyllomedusa hypochondrialis. Skin resistance to water loss was comparatively high, and rates of evaporation were as low as 4% of that from a free water surface. Standard rates of metabolism (SMR) varied from 89 microL O2 h(-1) at 18 degrees C to 316 microL O2 h(-1) at 34 degrees C and were sensitive to both temperature (T) and body mass (W; mL O2 h(-1) = 0.016W0.642 x 10(0.030T)). The mean SMR did not change significantly during four consecutive days of dehydration when animals lost 19%-34% of body mass. Therefore, it appears these frogs do not routinely depress metabolic rates following wiping. However, some individuals that lost higher percentages of body water exhibited trends of decreasing oxygen consumption, suggesting that suppression of metabolic rates might occur at greater levels of body water deficit or perhaps during a slower course of dehydration than imposed by our experiments (e.g., individuals that are secluded during periods of drought).  相似文献   

12.
The effects of hydromineral hormones and catecholamines on renal concentrating ability at different hydration states were examined in five male volunteers while they performed three trials. Each of these trials comprised a 60-min exercise bout on a treadmill (at 50% of maximal oxygen uptake) in a warm environment (dry bulb temperature, 35°C; relative humidity, 20–30%). In one session, subjects were euhydrated before exercise (C). In the two other sessions, after thermal dehydration (loss of 3% body mass) which markedly reduced plasma volume (PV) and increased plasma osmolality (osmpl), the subjects exercised either not rehydrated (Dh) or rehydrated (Rh) by drinking 600 ml of mineral water before and 40 min after the onset of exercise. During exercise in the Dh compared to C state, plasma renin, aldosterone, arginine vasopressin (AVP), noradrenaline and adrenaline concentrations were increased (P < 0.05). A reduction in creatinine clearance and urine flow was also observed (P < 0.05) together with a decrease in urine osmolality, osmolar clearance and sodium excretion, while free water clearance increased (P < 0.05). However, compared to Dh, Rh partially restored PV and osmpl and induced a marked reduction in the time courses of both the plasma AVP and catecholamine responses (P < 0.05). Values for renal water and electrolyte excretion were intermediate between those of Dh and C. Plasma atrial natriuretic peptide presented similar changes whatever the hydration state. These results demonstrate that during moderate exercise in the heat, renal concentrating ability is paradoxically reduced by prior dehydration in spite of high plasma AVP levels, and might be the result of marked activation of the sympatho-adrenal system. Rehydration, by reducing this activation, could partially restore the renal concentrating ability despite the lowered plasma AVP. Accepted: 23 April 1997  相似文献   

13.
The metabolic effects of evaporative water loss at 5 °C were assessed for both fall- and spring-collected spring peepersPsuedacris crucifer. Frogs readily endured the loss of 50% of total body water. During dehydration organ water content was defended with no change in water content in skeletal muscle, gut, and kidney of 50% dehydrated frogs and reduced water content in liver, brain and heart. Dehydration stimulated a rapid and massive increase in liver glucose production. In fall-collected frogs liver glucose rose by 120-fold to 2690±400 nmol · mg protein-1 or 220 mol · g ww-1 in 50% dehydrated frogs and glucose in other organs increased by 2.6- to 60-fold. Spring-collected frogs showed the same qualitative response to dehydration although absolute glucose levels were lower, rising maximally by 8.4-fold in liver. Glucose synthesis was supported by glycogenolysis in liver and changes in the levels of glycolytic intermediates in liver indicated that an inhibitory block at the phosphofructokinase locus during desiccation helped to divert hexose phosphates into the production of glucose. Liver energy status (ATP, total adenylates, energy charge) was maintained even after the loss of 35% of total body water but at 50% dehydration all parameters showed a sharp decline; for example, energy charge fell from about 0.85 to 0.42. Severe dehydration also led to an accumulation of lactate in four organs, probably hypoxia-induced the to impaired circulation. The hyperglycemic response ofP. crucifer to dehydration mimics the cryoprotectant synthesis response seen during freezing of this freeze-tolerant frog, suggesting that these share a common regultory mechanism and that the cryoprotectant response may have arisen out of pre-existing volume regulatory responses of amphibians. The hyperglycemic response to dehydration might also be utilized during winter hibernation to help retard body water loss by raising the osmolality of the body fluids in situations where hibernaculum conditions become dry.Abbreviations bin body mass - bw body water - CrP creatine phosphate - dw dry weight - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphate - G6P glucose-6-phosphate - PEP phosphoenolpyruvate - PFK phosphofructokinase - PYR pyruvate - ww wet weight  相似文献   

14.
This study examined the effects of rehydration (Rehy) with fluids of varying tonicities and routes of administration after exercise-induced hypohydration on exercise performance, fluid regulatory hormone responses, and cardiovascular and thermoregulatory strain during subsequent exercise in the heat. On four occasions, eight men performed an exercise-dehydration protocol of approximately 185 min (33 degrees C) to establish a 4% reduction in body weight. Following dehydration, 2% of the fluid lost was replaced during the first 45 min of a 100-min rest period by one of three random Rehy treatments (0.9% saline intravenous; 0.45% saline intravenous; 0.45% saline oral) or no Rehy (no fluid) treatment. Subjects then stood for 20 min at 36 degrees C and then walked at 50% maximal oxygen consumption for 90 min. Subsequent to dehydration, plasma Na(+), osmolality, aldosterone, and arginine vasopressin concentrations were elevated (P < 0.05) in each trial, accompanied by a -4% hemoconcentration. Following Rehy, there were no differences (P > 0.05) in fluid volume restored, post-rehydration (Post-Rehy) body weight, or urine volume. Percent change in plasma volume was 5% above pre-Rehy values, and plasma Na(+), osmolality, and fluid regulatory hormones were lower compared with no fluid. During exercise, skin and core temperatures, heart rate, and exercise time were not different (P > 0.05) among the Rehy treatments. Plasma osmolality, Na(+), percent change in plasma volume, and fluid regulatory hormones responded similarly among all Rehy treatments. Neither a fluid of greater tonicity nor the route of administration resulted in a more rapid or greater fluid retention, nor did it enhance heat tolerance or diminish physiological strain during subsequent exercise in the heat.  相似文献   

15.
The diving and thermoregulatory metabolic rates of two species of diving seabrid, common (Uria aalge) and thick-billed murres (U. lomvia), were studied in the laboratory. Post-absorptive resting metabolic rates were similar in both species, averaging 7.8 W·kg-1, and were not different in air or water (15–20°C). These values were 1.5–2 times higher than values predicted from published allometric equations. Feeding led to increases of 36 and 49%, diving caused increases of 82 and 140%, and preening led to increases of 107 and 196% above measured resting metabolic rates in common and thick-billed murres, respectively. Metabolic rates of both species increased linearly with decreasing water temperature; lower critical temperature was 15°C in common murres and 16°C in thick-billed murres. Conductance (assuming a constant body temperature) did not change with decreasing temperature, and was calculated at 3.59 W·m-2·oC-1 and 4.68 W·m-2·oC-1 in common and thick-billed murres, respectively. Murres spend a considerable amount of time in cold water which poses a significant thermal challenge to these relatively small seabirds. If thermal conductance does not change with decreasing water temperature, murres most likely rely upon increasing metabolism to maintain body temperature. The birds probably employ activities such as preening, diving, or food-induced thermogenesis to meet this challenge.Abbreviations ADL aerobic dive limit - BMR basal metabolic rate - FIT food-induced thermogenesis - MHP metabolic heat production - MR metabolic rate - PARR post-absorption resting rate - RMR resting metabolic rate - RQ respiratory quotient - SA surface area - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature - T IC Iower critical temperatiure - TC thermal conductance - V oxygen consumption rate - W body mass  相似文献   

16.
Summary The intestinal caeca reabsorb urinary sodium chloride (NaCl) and water (Rice and Skadhauge 1982). Free water may be generated if the reabsorbed NaCl is secreted via salt gland secretion (Schmidt-Nielsen et al. 1958). Therefore ceacal ligation should (a) reduce hingut NaCl and water reabsorption, (b) enhance the increase in plasma osmolality during saline acclimation, and (c) affect drakes more than ducks. Twelve Pekin drakes and 13 Pekin ducks, Anas platyrhynchos, were caecally ligated or sham operated before acclimation to 450 mmol · 1 NaCl. Body mass, hematocrit, plasma osmolality, and inonic concentrations of plasma, cloacal fluid, and salt gland secretion were measured after each increase in drinking water salinity. Osmoregulatory organ masses were determined. Caecal ligation did not effect plasma osmolality or ion concentrations of plasma, cloacal fluid, or salt gland secretion, but reduced salt gland size in ducks. Drakes and ducks drinking fresh water had the same hematocrit, plasma osmolality, and plasma concentrations of Na+ and Cl. In both sexes exposure to 75 mmol · 1-1 NaCl significantly decreased plasma [Na+] and doubled cloacal fluid [Na+]. Exposure to 450 mmol · 1-1 NaCl decreased body mass and increased hematocrit, plasma [Na+], [Cl], and plasma osmolality (more in drakes than in ducks); cloacal fluid osmolality nearly doubled compared to freshwater-adapted ducks, due mainly to osmolytes other than Na+ and Cl. The [Cl] in salt gland secretion only slightly exceeded drinking water [Cl].Abbreviations AVT antiduretic hormone - CF cloacal fluid - ECFV extraoellular fluid volume - FW freshwater acclimated - Hct hematocrit - MDWE mean daily water flux - [Na +]cf cloacal fluid sodium concentration - [Na +]pl plasma sodium concentration - Osm cf cloacal fluid osmolality - Osm pl plasma osmolality - SGS salt gland secretion - TBW total body water  相似文献   

17.
采用呼吸生理和血液生理的方法,探讨了性成熟青海湖裸鲤(Gymnocypris przewalskii)对盐度、碳酸盐碱度的适应性以及青海湖裸鲤在盐碱胁迫下的渗透调节和离子调节规律。将裸鲤从淡水突变到盐水(盐度14.01±0.01)、碱水(碳酸盐碱度33.03±0.01mmol·L-1)和青海湖水(盐度12.12±0.02、碳酸盐碱度29.07±0.09mmol·L-1)中,测定了在不同水质胁迫下裸鲤耗氧率、血浆渗透压和离子浓度的变化。结果表明:与淡水对照组比较,呼吸耗氧率除了盐度组在3h有显著性升高(P<0.05),其他实验组96h内均未出现显著性变化(P>0.05);裸鲤的窒息点为0.14~0.17mg·L-1,各实验组窒息点均没有显著性差异(P>0.05);碱度组血浆的渗透浓度和Na+、Cl-、Ca2+离子浓度在96h内未出现变化(P>0.05),盐度组和青海湖水组在所测时间段有显著的升高(P<0.05),并且随着胁迫时间的延长,在72h达到峰值。各实验组血浆K+浓度变化没有血浆Na+、Cl-明显,K+浓度有增高的趋势,且都在72h达到了峰值。青海湖裸鲤具有较强的盐碱耐受性,能通过渗透调节和离子调控适应高盐碱环境,而消耗能量较少。  相似文献   

18.
19.
Predicting the effects of high environmental temperatures and drought on populations requires understanding how these conditions will influence the thermoregulatory behavior and thermal tolerance of organisms. Ectotherms show proportional (fine-tuned) and all-or-none (abrupt) responses to avoid overheating. Scattered evidence suggests that dehydration alters these behavioral responses and thermal tolerance, but these effects have not been evaluated in an integrative manner. We examined the effects of hydration level on the behavioral thermoregulation and behavioral and physiological thermal limits of the “bullfrog” (Rana catesbeiana), a well-studied and important invasive species. To examine the effects of dehydration on proportional responses, we compared the Preferred Body Temperatures (PBT) of frogs with restricted and unrestricted access to water. To assess the effect of dehydration on all-or-none responses, we measured and compared the Voluntary Thermal Maximum (VTMax) at different hydration levels (100%, 90%, 80% of body weight at complete hydration). Finally, to understand the effect of dehydration on physiological thermal tolerance, we measured the Critical Thermal Maximum (CTMax) of frogs at matched hydration levels. PBT, VTMax, and CTMax all decreased in response to higher dehydration levels. However, bullfrogs changed their PBT more than their VTMax or CTMax in response to dehydration. Moreover, some severely dehydrated individuals did not exhibit a VTMax response. We discuss the implications of our results in the context of plasticity of thermoregulatory responses and thermal limits, and its potential application to mechanistic modeling.  相似文献   

20.
In early spring, food and water consumption and the excretion and clearances of urine and solutes reached maximal rates. Water consumption exceeded food intake and urine production and plasma osmolality was lowest. Toward early and late summer, water intake decreased faster than food consumption and urine production. Urea excretion and clearances diminished with food consumption, while creatinine clearance decreased only slightly. Plasma osmolality increased. The data are consistent with rehydration soon after hibernation is completed, followed by a period of weight gain and dehydration in preparation for the next prolonged period of hibernation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号