首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract. Extensive areas in the mountain grasslands of central Argentina are heavily invaded by alien species from Europe. A decrease in biodiversity and a loss of palatable species is also observed. The invasibility of the tall‐grass mountain grassland community was investigated in an experiment of factorial design. Six alien species which are widely distributed in the region were sown in plots where soil disturbance, above‐ground biomass removal by cutting and burning were used as treatments. Alien species did not establish in undisturbed plots. All three types of disturbances increased the number and cover of alien species; the effects of soil disturbance and biomass removal was cumulative. Cirsium vulgare and Oenothera erythrosepala were the most efficient alien colonizers. In conditions where disturbances did not continue the cover of aliens started to decrease in the second year, by the end of the third season, only a few adults were established. Consequently, disturbances are needed to maintain alien populations in tall‐grass mountain grasslands. Burning also increased the species richness of native species. We conclude that an efficient way to control the distribution of alien species is to decrease grazing pressure while burning as a traditional management tool may be continued.  相似文献   

2.
Four plant functional types (PFTs) were used to compare the vegetation structure of an alien-invaded Acacia nilotica savanna with one of negligible invasions. Heights, canopy covers and species richness of three native PFTs (woody plants, grasses and herbs) and one alien PFT (woody plants) were measured in 14, 1-m2 quadrats sampled in a stratified-random pattern in a 400-m2 plot demarcated in each savanna. In the uninvaded plot, mean heights of native PFTs were stratified. In the invaded plot, the mean height of aliens extended into the native woody stratum with the lower range of native woody PFT heights reduced to the grass stratum. Discriminant analysis of canopy covers and species richness of the four PFTs revealed significant differences in composition between plots with the alien PFT being the most important variable correlated with these differences. Univariate analysis confirmed the dominance of alien woody plants in the invaded plot but also showed significant reductions in the canopy covers and species richness of native herbs and grasses compared to those in the uninvaded plot. These results suggest that PFTs can rapidly measure small-scale, spatial differences in the physiognomy, composition and species richness of A. nilotica savannas when invaded by alien woody plants.  相似文献   

3.
Across the globe, invasive alien species cause severe environmental changes, altering species composition and ecosystem functions. So far, mountain areas have mostly been spared from large‐scale invasions. However, climate change, land‐use abandonment, the development of tourism and the increasing ornamental trade will weaken the barriers to invasions in these systems. Understanding how alien species will react and how native communities will influence their success is thus of prime importance in a management perspective. Here, we used a spatially and temporally explicit simulation model to forecast invasion risks in a protected mountain area in the French Alps under future conditions. We combined scenarios of climate change, land‐use abandonment and tourism‐linked increases in propagule pressure to test if the spread of alien species in the region will increase in the future. We modelled already naturalized alien species and new ornamental plants, accounting for interactions among global change components, and also competition with the native vegetation. Our results show that propagule pressure and climate change will interact to increase overall species richness of both naturalized aliens and new ornamentals, as well as their upper elevational limits and regional range‐sizes. Under climate change, woody aliens are predicted to more than double in range‐size and herbaceous species to occupy up to 20% of the park area. In contrast, land‐use abandonment will open new invasion opportunities for woody aliens, but decrease invasion probability for naturalized and ornamental alien herbs as a consequence of colonization by native trees. This emphasizes the importance of interactions with the native vegetation either for facilitating or potentially for curbing invasions. Overall, our work highlights an additional and previously underestimated threat for the fragile mountain flora of the Alps already facing climate changes, land‐use transformations and overexploitation by tourism.  相似文献   

4.
Mammalian grazing induces changes in vegetation properties in grasslands, which can affect a wide variety of other animals including many arthropods. However, the impacts may depend on the type and body size of these mammals. Furthermore, how mammals influence functional trait syndromes of arthropod communities is not well known. We progressively excluded large (e.g. red deer, chamois), medium (e.g. alpine marmot, mountain hare), and small (e.g. mice) mammals using size‐selective fences in two vegetation types (short‐ and tall‐grass vegetation) of subalpine grasslands. We then assessed how these exclusions affected the community composition and functional traits of ground beetles (Coleoptera, Carabidae), and which vegetation characteristic mediated the observed effects. Total carabid biomass, the activity densities of carabids with specific traits (i.e. small eyes, short wings), the richness of small‐eyed species and the richness of herbivorous species were significantly higher when certain mammals were excluded compared to when all mammals had access, regardless of vegetation type. Excluding large and medium mammals increased the activity density of herbivorous carabid species, but only in short‐grass vegetation. Similarly, excluding large mammals (ungulates) altered carabid species composition in the short‐, but not in the tall‐grass vegetation. All these responses were related to aboveground plant biomass, but not to plant Shannon diversity or vegetation structural heterogeneity. Our results indicate that changes in aboveground plant biomass are key drivers of mammalian grazers’ influence on carabids, suggesting that bottom–up forces are important in subalpine grassland systems. The exclusion of ungulates provoked the strongest carabid response. Our results, however, also highlight the ecological significance of smaller herbivorous mammals. Our study furthermore shows that mammalian grazing not only altered carabid community composition, but also caused community‐wide functional trait shifts, which could potentially have a wider impact on species interactions and ecosystem functioning.  相似文献   

5.
Roadsides may homogenize the distribution of native species and act as corridors for the spread of alien taxa. We examined the variation in native and alien plant species richness and composition at two spatial scales defined by altitude and habitat type (edges and fill slopes), as well as the relationship between native and exotic species richness in roadside plant communities in mountains from central Argentina. Following a gradient from 1100 to 2200 m a.s.l. along a mountain road, plant species cover was recorded within sample plots of 30 m × 10 m systematically located at 100‐m altitude intervals on both roadside habitats. Although native species richness decreased with altitude and composition changed accordingly, the number of alien species peaked at both extremes of the elevation gradient and did not reflect an altitudinal replacement of chorological groups. The number of both native and alien species was higher in roadside edges, but a negative association between the richness of native and alien species occurred only on fill slopes, suggesting that roadside habitats differ in their susceptibility to plant species colonization and in the mechanisms driving native and alien species richness. Our results highlight the importance of altitude and roadside habitat as factors controlling plant species richness and composition along roadside communities in central Argentina. Although altitude acts as a filter for native plants, it apparently did not constrain the establishment of alien species along the studied roadsides, indicating that the influence of this road as a plant species corridor may increase with time, promoting the opportunities for aliens to expand their current distribution.  相似文献   

6.
Much of our current understanding of the impact of invasive species on plant communities is based on patterns occurring in the above-ground vegetation, while only few studies have examined changes in soil seed banks associated with plant invasions, despite their important role as determinants of vegetation dynamics. Here, we reviewed the literature on the impact of plant invasions on the seed bank and we provide a quantitative synthesis using a meta-analysis approach. Specifically, (1) we quantified the impact of 18 invasive alien plants on (i) species richness and (ii) density of the seed banks of invaded communities, based on 58 pair-wise invaded-uninvaded comparisons (cases); we identified (2) the invasive taxa that are responsible for the largest changes in the seed bank; and (3) the habitats where substantial changes occur. Our study showed three major findings: (1) species richness (68% of cases) and density (58% of cases) were significantly lower in native seed banks invaded by alien plants; (2) species richness and density of native and alien species were remarkably lower in seed banks invaded by large, perennial herbs compared to uninvaded sites; and (3) invaded seed banks were often associated with a larger richness and/or abundance of alien species. This study indicates a need for additional seed bank data in invasion ecology to characterize species-specific and habitat-specific impacts of plant invasions, and to determine whether changes in the seed banks of native and alien species are a symptom of environmental degradation prior to a plant invasion or whether they are its direct result. The findings of this study help improve our capacity to predict the long-term implications of plant invasions, including limitations in the recruitment of native species from the seed bank and the potential for secondary invasions by seeds of other alien species.  相似文献   

7.
Anthropogenic nutrient enrichment of mountain grasslands has boosted grasses and fast‐growing unpalatable plants at the expense of slow‐growing species, resulting in a significant loss in biodiversity. A potential tool to reduce nutrient availability and aboveground productivity without destroying the perennial vegetation is carbon (C) addition. However, little is known about its suitability under severe climatic conditions. Here, we report the results of a 3‐year field study assessing the effects of sawdust addition on soil nutrients, aboveground productivity, and vegetational composition of 10 grazed and ungrazed mountain grasslands. Of particular interest was the effect of C addition on grasses and on the tall unpalatable weed Veratrum album. After 3 years, soil pH, ammonium, and plant‐available phosphorus were not altered by sawdust application, and nitrate concentrations were marginally higher in treatment plots. However, the biomass of grasses and forbs (without V. album) was 20–25% lower in sawdust‐amended plots, whereas the biomass of V. album was marginally higher. Sawdust addition reduced the cover of grasses but did not affect evenness, vegetation diversity, or plant species richness, although species richness generally increased with decreasing biomass at our sites. Our results suggest that sawdust addition is a potent tool to reduce within a relatively short time the aboveground productivity and grass cover in both grazed and ungrazed mountain grasslands as long as they are not dominated by tall unpalatable weeds. The technique has the advantage that it preserves the topsoil and the perennial soil seed bank.  相似文献   

8.
The soil seed‐banks in the main natural vegetation patches that make up mountain grasslands on granite substrates in central Argentina were studied. The main natural vegetation types are moist swards, tall‐tussock grasslands and stony grasslands. Ten compound soil samples from each community at two soil depths (0–5 and 5–10 cm) were taken. The density of soil seed‐banks was highest in moist swards, intermediate in stony grasslands and lowest in tall‐tussock grasslands. Low levels of similarity were found between the established vegetation and total soil seed‐bank in tall‐tussock grasslands and stony grasslands, but the similarity was higher in swards. In all three communities the seed‐bank was most frequently transient in nature. Short‐term persistent and long‐term persistent seed‐banks were less frequent. Regeneration from the seed‐banks after disturbance is expected to differ among communities on different edaphic patches. On the basis of the density and longevity of the soil seed‐banks and the similarity to the established vegetation, potential for in situ regeneration should be lower in tall‐tussock grasslands, intermediate in stony grasslands and higher in moist swards.  相似文献   

9.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

10.
Invasion by woody alien plants, construction, and mining operations are among the major disturbances degrading vegetation in the Cape Floristic Kingdom, South Africa. The aim of this study was to assess whether native fynbos shrubland vegetation could be restored following dense alien invasion and disturbance by mining. An area supporting dense alien trees was cleared and topsoil was stripped and stockpiled to simulate mining disturbance. A field trial investigated the effects of topsoil depth, seed mix application, and fertilizer on native species recruitment and vegetation development over a three‐year period. Soil‐stored seed banks contributed 60% of the species recruited, indicating that areas invaded for three decades have good restoration potential. The addition of a fynbos seed mix, which included serotinous overstory species, improved both the richness and structural composition of the vegetation. Most species sown in untopsoiled plots established, but survival and growth was low compared to topsoil plots. Poor growth in combination with a lack of soil seed bank species, indicate that restoring a diverse and functional cover of indigenous vegetation on subsoil is not possible in the short‐term. Soil amelioration is required to improve rooting conditions and initiate ecosystem processes. Shallow and deep topsoil treatments yielded high plant density, richness, and projected canopy cover, but canopy cover was higher in deep topsoil plots throughout the trial. Fertilizer addition increased canopy cover in untopsoiled and shallow topsoil plots via an increase in alien annual species. Fertilizer addition ultimately may lead to increased native vegetation cover in untopsoiled areas, but as it increased proteoid mortality on deep topsoil plots, it is not recommended for sites where topsoil is available. A species‐rich and structurally representative fynbos community may be restored on topsoiled areas provided that the native disturbance regime is simulated and seeds of major structural guilds not present in the soil seed bank are included in the seed mix.  相似文献   

11.
Cover and richness of a 5‐year revegetation effort were studied with ,respect to small‐scale disturbance and nutrient manipulations. The site, originally a relict tallgrass prairie mined for gravel, was replanted to native grasses using a seed mixture of tall‐, mixed‐, and short‐grass species. Following one wet and three relatively dry years, a community emerged, dominated by species common in saline soils not found along the Colorado Front Range. A single species, Alkali sacaton (Sporobolus airoides), composed nearly 50% of relative vegetation cover in control plots exhibiting a negative relationship between cover and richness. Seeded species composed approximately 92% of vegetation cover. The remaining 8% was composed of weeds from nearby areas, seed bank survivors, or mix contaminants. Three years of soil nutrient amendments, which lowered plant‐available nitrogen and phosphorus, significantly increased relative cover of seeded species to 97.5%. Fertilizer additions of phosphate enhanced abundance of introduced annual grasses (Bromus spp.) but did not significantly alter cover in control plots. Unmanipulated 4‐m2 plots contained an average of 4.7 planted species and 3.9 nonplanted species during the 5‐year period, whereas plots that received grass herbicide averaged 5.4 nonplanted species. Species richness ranged from an average 6.9 species in low‐nutrient, undisturbed plots to 10.9 species in the relatively high‐nutrient, disturbed plots. The use of stockpiled soils, applied sparingly, in conjunction with a native seed mix containing species uncommon to the preexisting community generated a species‐depauperate, novel plant community that appears resistant to invasion by ruderal species.  相似文献   

12.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

13.
Questions: 1. What are the distribution and habitat associations of non‐native (neophyte) species in riparian zones? 2. Are there significant differences, in terms of plant species diversity, composition, habitat condition and species attributes, between plant communities where non‐natives are present or abundant and those where non‐natives are absent or infrequent? 3. Are the observed differences generic to non‐natives or do individual non‐native species differ in their vegetation associations? Location: West Midlands Conurbation (WMC), UK. Methods: 56 sites were located randomly on four rivers across the WMC. Ten 2 m × 2 m quadrats were placed within 15 m of the river to sample vegetation within the floodplain at each site. All vascular plants were recorded along with site information such as surrounding land use and habitat types. Results: Non‐native species were found in many vegetation types and on all rivers in the WMC. There were higher numbers of non‐natives on more degraded, human‐modified rivers. More non‐native species were found in woodland, scrub and tall herb habitats than in grasslands. We distinguish two types of communities with non‐natives. In communities colonized following disturbance, in comparison to quadrats containing no non‐native species, those with non‐natives had higher species diversity and more forbs, annuals and shortlived monocarpic perennials. Native species in quadrats containing non‐natives were characteristic of conditions of higher fertility and pH, had a larger specific leaf area and were less stress tolerant or competitive. In later successional communities dominated by particular non‐natives, native diversity declined with increasing cover of non‐natives. Associated native species were characteristic of low light conditions. Conclusions: Communities containing non‐natives can be associated with particular types of native species. Extrinsic factors (disturbance, eutrophication) affected both native and non‐native species. In disturbed riparian habitats the key determinant of diversity is dominance by competitive invasive species regardless of their native or non‐native origin.  相似文献   

14.
Recent studies highlight the importance of selecting the appropriate scale and indices of invasion level for evaluating the abundance and impact of alien plants. Our survey considers the use of vegetation plot databases compared with floristic checklists to address invasion patterns regarding alien–native relationships across vegetation types by means of a multi-scale approach. We analysed the alien–native richness relationship in 1077 vegetation plots from the Basque Country (N. Spain) at ecosystem level and phytosociological class and alliance levels. According to our results, the alien species richness (Alo)–native species richness (Nat) relationship is variable and depends not only on the scale but also on the vegetation type. In contrast with other multi-scale approaches, no negative correlation has been detected at any studied level. The strong correlation existing between plot number and cumulative Alo and cumulative Nat highlights the constraints of using checklists to generalize invasion patterns. Our results demonstrate that the combined use of both relative alien species richness and relative alien species cover facilitates the understanding of invasion patterns across plant communities at different scales. In addition to climate, disturbance and propagule pressure, habitat type proved to be an important filter for alien species, capable of explaining such patterns.  相似文献   

15.
The herbivore load (abundance and species richness of herbivores) on alien plants is supposed to be one of the keys to understand the invasiveness of species. We investigate the phytophagous insect communities on cabbage plants (Brassicaceae) in Europe. We compare the communities of endophagous and ectophagous insects as well as of Coleoptera and Lepidoptera on native and alien cabbage plant species. Contrary to many other reports, we found no differences in the herbivore load between native and alien hosts. The majority of insect species attacked alien as well as native hosts. Across insect species, there was no difference in the patterns of host range on native and on alien hosts. Likewise the similarity of insect communities across pairs of host species was not different between natives and aliens. We conclude that the general similarity in the community patterns between native and alien cabbage plant species are due to the chemical characteristics of this plant family. All cabbage plants share glucosinolates. This may facilitate host switches from natives to aliens. Hence the presence of native congeners may influence invasiveness of alien plants.  相似文献   

16.

Aim

To assess how environmental, biotic and anthropogenic factors shape native–alien plant species richness relationships across a heterogeneous landscape.

Location

Banks Peninsula, New Zealand.

Methods

We integrated a comprehensive floristic survey of over 1200 systematically located 6 × 6 m plots, with corresponding climate, environmental and anthropogenic data. General linear models examined variation in native and alien plant species richness across the entire landscape, between native‐ and alien‐dominated plots, and within separate elevational bands.

Results

Across all plots, there was a significant negative correlation between native and alien species richness, but this relationship differed within subsets of the data: the correlation was positive in alien‐dominated plots but negative in native‐dominated plots. Within separate elevational bands, native and alien species richness were positively correlated at lower elevations, but negatively correlated at higher elevations. Alien species richness tended to be high across the elevation gradient but peaked in warmer, mid‐ to low‐elevation sites, while native species richness increased linearly with elevation. The negative relationship between native and alien species richness in native‐dominated communities reflected a land‐use gradient with low native and high alien richness in more heavily modified native‐dominated vegetation. In contrast, native and alien richness were positively correlated in very heavily modified alien‐dominated plots, most likely due to covariation along a gradient of management intensity.

Main conclusions

Both positive and negative native–alien richness relationships can occur across the same landscape, depending on the plant community and the underlying human and environmental gradients examined. Human habitat modification, which is often confounded with environmental variation, can result in high alien and low native species richness in areas still dominated by native species. In the most heavily human modified areas, dominated by alien species, both native and alien species may be responding to similar underlying gradients.
  相似文献   

17.
Ben Gooden  Kris French 《Oikos》2015,124(3):298-306
Alien plant invasion and nutrient enrichment as a result of anthropogenic landscape modification seriously threaten native plant community diversity. It is poorly understood, however, whether these two disturbances interact with the functional identity of recipient native plants to drive community change. We performed a mesocosm experiment to examine whether the interactive effects of invasion by a stoloniferous turf‐grass Stenotaphrum secundatum and nutrient enrichment vary across different plant growth forms of an endangered coastal plant community. Communities contained 18 species (drawn without replacement from a pool of 31 species) with either runner, tufted or woody growth forms. Species were well‐established and reproductively mature prior to S. secundatum introduction. Species growth (% cover), reproductive output, soil temperature and light availability were monitored for two growing seasons. Invasion and nutrient enrichment (two levels: ‘natural control’ and ‘enriched’) had no effect on species richness, community composition, reproductive output, soil temperature or light penetration. There was no interactive effect of nutrients and invasion on community productivity (i.e. final biomass), such that invasion caused a reduction in community biomass at both natural and enriched nutrient levels. This was driven only by reduced biomass of functionally‐similar native runner species, which share similar root morphologies and nutrient‐acquisition strategies with S. secundatum. Our study indicates that impacts of invasion are dependent upon the functional identity of species within recipient communities, not the availability of resources. This shows that management cannot buffer invader effects by manipulating resource availability. Revegetation strategies should target functionally‐similar natives for replacement following invader control.  相似文献   

18.
Aim We tested the hypothesis that anthropogenic fires favour the successful establishment of alien annual species to the detriment of natives in the Chilean coastal matorral. Location Valparaíso Region, central Chile. Methods We sampled seed rain, seedbank emergence and establishment of species in four paired burned and unburned areas and compared (using GLMM) fire resistance and propagule arrival of alien and native species. To assess the relative importance of seed dispersal and seedbank survival in explaining plant establishment after fire, we compared seed rain and seedbank structure with post‐fire vegetation using ordination analyses. Results Fire did not change the proportion of alien species in the coastal matorral. However, fire increased the number of annual species (natives and aliens) of which 87% were aliens. Fire reduced the alien seedbank and not the native seedbank, but alien species remained dominant in burned soil samples (66% of the total species richness). Seed rain was higher for alien annuals than for native annuals or perennials, thus contributing to their establishment after fire. Nevertheless, seed rain was less important than seedbank survival in explaining plant establishment in burned areas. Main conclusions Anthropogenic fires favoured alien and native annuals. Thus, fire did not increase the alien/native ratio but increased the richness of alien species. The successful establishment of alien annuals was attributable to their ability to maintain rich seedbanks in burned areas and to the greater propagule arrival compared to native species. The native seedbank also survived fire, indicating that the herbaceous community has become highly resilient after centuries of human disturbances. Our results demonstrate that fire is a relevant factor for the maintenance of alien‐dominated grasslands in the matorral and highlight the importance of considering the interactive effect of seed rain and seedbank survival to understand plant invasion patterns in fire‐prone ecosystems.  相似文献   

19.
We applied a multifaceted approach, in terms of taxonomic, phylogenetic and functional diversity, to study at fine scale how three plant communities occurring in a Mediterranean dune have been affected by the encroachment of alien species. We sampled 81 sites in a Site of Community Importance in Central Italy. Past and present land use/cover data have been derived using GIS and remote sensing tools. Information on plants phylogenesis and functional traits has been gathered from several databases. Ecological variables have been collected. GLMs in conjunction with an Information Based approach were used to model species composition, richness and phylogenetic diversity. Multivariate analysis has been used to study functional diversity. The results outlined how total species richness is related to recent land transformations and to a set of environmental factors. The analyses of functional and phylogenetic diversity support the idea that alien species significantly affect the functional and phylogenetic characteristics of the native plant communities. Habitat filtering seems to be predominant in not-invaded plots, whereas limiting similarity/niche differentiation is predominant in driving community assembly of invaded communities. The attained scenario depicts the spread of a reduced group of alien species phylogenetically and functionally well-differentiated, able to reduce the abundance of native species, not to exclude them though. Ultimately, the multifaceted approach assisted in understanding the community assembly of dune vegetation, and to discern the relative impact of alien species on native plant communities. Such approach represents a crucial step to achieve an efficient management of dune habitats, as useful tool to monitor and to effectively protect their biodiversity and functioning.  相似文献   

20.
封育是退化沙地植被恢复与生态重建的重要措施, 理解长期处于封育状态下不同类型沙地植物群落特征变化及其影响因素有利于沙地植被恢复和生态重建。该文基于对科尔沁沙地长期封育的流动沙丘(2005年封育)、固定沙丘(1985年封育)和沙质草地(1997年封育)连续多年(2005-2017年)的植物群落调查, 结合土壤种子库、土壤养分以及气象数据, 分析了植物群落特征变化及其对环境变化的响应。研究结果表明流动沙丘植被盖度显著增加, 群落生物量和物种多样性年际间波动变化, 但无明显趋势; 固定沙丘植物群落存在逆行演替趋势, 具体表现为群落生物量、灌木和半灌木以及豆科优势度显著下降, 而一年生和多年生杂类草优势度显著增加; 沙质草地群落物种丰富度和多年生禾草优势度存在降低趋势, 并且一年生杂类草优势度明显高于其他功能群, 群落存在退化现象。3类沙地土壤种子密度变化不显著, 而种子丰富度在流动沙丘显著增加, 在固定沙丘和沙质草地有下降趋势, 土壤养分仅有有效氮和有效磷含量增加。回归分析结果表明气温和降水是影响年内生物量积累的主要因素, 但对年际间群落生物量和物种丰富度变化影响不大。除趋势对应分析结果显示土壤种子库与植物群落之间存在很高的相似性, 典型相关分析结果表明沙质草地植物群落与土壤养分紧密相关, 而固定沙丘群落主要与土壤水分紧密相关。综合以上结果可知, 封育33年的固定沙丘群落和封育21年的沙质草地群落都存在退化现象, 而封育11年的流动沙丘群落正在缓慢恢复, 因此封育年限的设定对退化沙地植被恢复至关重要, 封育时间过长不仅不利于植物群落恢复, 反而会使群落发生逆行演替, 建议封育年限的设定应综合考虑植被退化程度、土壤养分状况、土壤种子库基础以及气候条件等因素的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号