首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
2.
TaPHT1.2 is a functional, root predominantly expressed and low phosphate (Pi) inducible high-affinity Pi transporter in wheat, which is more abundant in the roots of P-efficient wheat genotypes (e.g., Xiaoyan 54) than in P-inefficient genotypes (e.g., Jing 411) under both Pi-deficient and Pi-sufficient conditions. To characterize TaPHT1.2 further, we genetically mapped a TaPHT1.2 transporter, TaPHT1.2-D1, on the long arm of chromosome 4D using a recombinant inbred line population derived from Xiaoyan 54 and Jing 411, and isolated a 1,302 bp fragment of the TaPHT1.2-D1 promoter (PrTaPHT1.2-D1) from Xiaoyan 54. TaPHT1.2-D1 shows collinearity with OsPHT1.2 that has previously been reported to mediate the translocation of Pi from roots to shoots. PrTaPHT1.2-D contains a number of Pi-starvation responsive elements, including P1BS, WRKY-binding W-box, and helix-loop-helix-binding elements. PrTaPHT1.2-D1 was then used to drive expression of 13-glucuronidase (GUS) reporter gene in Arabidopsis through Agrobacterium-mediated transformation. Histochemical analysis of transgenic Arabidopsis plants showed that the reporter gene was specifically induced by Pi-starvation and predominantly expressed in the roots. As there is only one SNP between the TaPHT1.2-D1 promoters of Xiaoyan 54 and Jing 411, and this SNP does not exist within the Pi-starvation responsive elements, the differential expression of TaPHT1.2 in Xiaoyan 54 and Jing 411 may not be caused by this SNP.  相似文献   

3.
Promoters of phosphate transporter genes MtPT1 and MtPT2 of Medicago truncatula were isolated by utilizing the gene-space sequence information and by screening of a genomic library, respectively. Two reporter genes, beta-glucuronidase (GUS) and green fluorescent protein (GFP) were placed under the control of the MtPT1 and MtPT2 promoters. These chimeric transgenes were introduced into Arabidopsis thaliana and transgenic roots of M. truncatula, and expression patterns of the reporter genes were assayed in plants grown under different phosphate (Pi) concentrations. The expression of GUS and GFP was only observed in root tissues, and the levels of expression decreased with increasing concentrations of Pi. GUS activities in roots of transgenic plants decreased 10-fold when the plants were transferred from 10 microM to 2 mM Pi conditions, however, when the plants were transferred back to 10 microM Pi conditions, GUS expression reversed back to the original level. The two promoters lead to different expression patterns inside root tissues. The MtPT1 promoter leads to preferential expression in root epidermal and cortex cells, while MtPT2 promoter results in strong expression in the vascular cylinder in the center of roots. Promoter deletion analyses revealed possible sequences involved in root specificity and Pi responsiveness. The promoters are valuable tools for defined engineering of plants, particularly for root-specific expression of transgenes.  相似文献   

4.
5.
Phosphate (Pi) deficiency is one of the leading causes of loss in crop productivity. Plants respond to Pi deficiency by increasing Pi acquisition and remobilization involving organic and inorganic Pi transporters. Here, we report the functional characterization of a putative organic Pi transporter, Glycerol-3-phosphate permease (G3Pp) family, comprising five members (AtG3Pp1 to -5) in Arabidopsis (Arabidopsis thaliana). AtG3Pp1 and AtG3Pp2 showed 24-and 3-fold induction, respectively, in the roots of Pi-deprived seedlings, whereas Pi deficiency-mediated induction of AtG3Pp3 and -4 was evident in both roots and shoots. Furthermore, promoter-β-glucuronidase (GUS) fusion transgenics were generated for AtG3Pp2 to -5 for elucidation of their in planta role in Pi homeostasis. During Pi starvation, there was a strong expression of the reporter gene driven by AtG3Pp4 promoter in the roots, shoots, anthers, and siliques, whereas GUS expression was specific either to the roots (AtG3Pp3) or to stamens and siliques (AtG3Pp5) in other promoter-GUS fusion transgenics. Quantification of reporter gene activities further substantiated differential responses of AtG3Pp family members to Pi deprivation. A distinct pattern of reporter gene expression exhibited by AtG3Pp3 and AtG3Pp5 during early stages of germination also substantiated their potential roles during seedling ontogeny. Furthermore, an AtG3Pp4 knockdown mutant exhibited accentuated total lateral root lengths under +phosphorus and -phosphorus conditions compared with the wild type. Several Pi starvation-induced genes involved in root development and/or Pi homeostasis were up-regulated in the mutant. A 9-fold induction of AtG3Pp3 in the mutant provided some evidence for a lack of functional redundancy in the gene family. These results thus reflect differential roles of members of the G3Pp family in the maintenance of Pi homeostasis.  相似文献   

6.
两个小麦磷转运蛋白基因的分离、功能鉴定和表达研究   总被引:7,自引:0,他引:7  
磷是能量代谢、核酸以及许多生物膜合成的重要底物。在光合作用、呼吸作用等过程中发挥了重要作用。中国大多数小麦产区的土壤存在着缺磷的问题。磷饥饿给小麦生产造成了很大损失。培育耐低磷小麦是解决这一问题的一个重要途径。在磷饥饿的过程中,哪些基因的表达发生了变化.它们是如何变化的,弄清楚这些问题对于培育转基因耐低磷小麦具有重要的意义。磷转运蛋白基因在植物吸收磷的过程中发挥着重要作用。利用RT—PCR的方法,我们从普通小麦“小偃54”中分离了两个磷转运蛋白基因TaPT8和TaPHT2;1。通过与酵母突变体互补分析表明这两个基因都能够与磷吸收功能存在缺陷的酵母突变体实现功能互补,在低磷条件下有促进酵母突变体吸收磷的作用。进一步分析表明TaPT8属于Pht1家族。TaPHT2;1属于Pht2家族。运用RQRT—PCR的方法进行分析后发现TaPT8在根中表达,受磷饥饿的诱导;TaPHT2;1主要在绿色组织中表达,受磷饥饿的抑制,受光的诱导。TaPT8可能主要参与了小麦的根从土壤中吸收磷的过程。TaPHT2;1可能在磷从细胞质向叶绿体内转运的过程中发挥了重要作用。  相似文献   

7.
Phosphorus (P) stress responsive genes have been identified and characterized, including the high-affinity phosphate transporter AtPHT1;4 from Arabidopsis thaliana. This gene encodes a membrane protein that is primarily expressed in roots under phosphorus deficiency. A 2.3-kb promoter region from AtPHT1;4 has been fused with the β-glucuronidase (GUS) encoding gene and introduced into maize via biolistic bombardment to evaluate its spatiotemporal activity in a heterologous system. AtPHT1;4::GUS expression is detected preferentially in transgenic maize roots under P deficiency. Further analysis of transgenic plants has also revealed that GUS activity is higher in roots than in leaves by about sixfold. These results demonstrate the ability of AtPHT1;4 promoter to direct expression of the reporter gene in a monocot root system under P stress. This property of AtPHT1;4 promoter makes it useful to engineer maize plants to modify the soil’s rhizosphere and increase efficiency of P acquisition under P stress conditions.  相似文献   

8.
9.
拟南芥SEN1基因受衰老诱导.将该基因启动子融合报告基因萄聚糖酶(glucuronidase,GUS)基因转入拟南芥,通过染色并测定GUS活性发现,缺氮、缺磷、缺钾诱导叶中SEN1表达,而只有缺磷能导根中SEN1表达.缺磷对根叶中SEN1的诱导被3%葡萄糖和细胞分裂素抑制.3%葡萄糖胺在根和叶中均诱导SEN1表达,外源细胞分裂素不能抑制这种效应.结果表明:SEN1基因可受缺磷信号特异调控,并受糖信号和细胞分裂素负调控;葡萄糖胺能大大促进根和叶中SEN1表达,且不受细胞分裂素的负调控.  相似文献   

10.
11.
12.
13.
采用PCR技术从拟南芥中克隆了SCBP60g基因的启动子,并与GUS报告基因融合构建重组表达载体,转化野生型拟南芥,对获得的转基因株系进行GUS组织染色,从基因调控水平上探讨其在功能方面的差异。结果显示:SCBP60g基因的启动子能指导GUS报告基因在拟南芥的根、茎、叶和花中表达,并且在这些部位的维管束表达较强。这种表达方式与LCBP60g基因的启动子指导的GUS基因组织化学染色有差异,表明这个启动子的表达调控具有一定的特异性。  相似文献   

14.
多聚ADP核糖聚合酶(PARP)受基因毒剂的特异性诱导。将拟南芥(Arabidopsis thaliana)AtPARP1基因上游长2179bp的启动子片段插入到质粒pAKK687的β-葡萄糖醛酸糖苷酶(GUS)报告基因上游,转化拟南芥。GUS组织化学染色结果表明,GUS报告基因仅在苗龄3-5天的拟南芥根部及花发育早期的雄蕊中表达;1.5μg.mL-1博莱霉素与22μg.mL-1丝裂霉素联用强烈诱导了GUS报告基因的表达(尤其在拟南芥的幼苗和果荚中)。进一步降低抗生素浓度,发现单独使用1μg.mL-1博莱霉素对GUS报告基因也具较强的诱导活性,且对拟南芥幼苗的生长无影响。上述结果表明,AtPARP1启动子是一个新型的具较大应用潜力的抗生素诱导型启动子。  相似文献   

15.
Plant phosphate (Pi) transporters mediate the uptake and translocation of this nutrient within plants. A total of 13 sequences in the rice ( Oryza sativa ) genome can be identified as belonging to the Pi transporter (Pht1) family. Here, we report on the expression patterns, biological properties and the physiological roles of two members of the family: OsPht1;2 ( OsPT2 ) and OsPht1;6 ( OsPT6 ). Expression of both genes increased significantly under Pi deprivation in roots and shoots. By using transgenic rice plants expressing the GUS reporter gene, driven by their promoters, we detected that OsPT2 was localized exclusively in the stele of primary and lateral roots, whereas OsPT6 was expressed in both epidermal and cortical cells of the younger primary and lateral roots. OsPT6, but not OsPT2, was able to complement a yeast Pi uptake mutant in the high-affinity concentration range. Xenopus oocytes injected with OsPT2 mRNA showed increased Pi accumulation and a Pi-elicited depolarization of the cell membrane electrical potential, when supplied with mM external concentrations. Both results show that OsPT2 mediated the uptake of Pi in oocytes. In transgenic rice, the knock-down of either OsPT2 or OsPT6 expression by RNA interference significantly decreased both the uptake and the long-distance transport of Pi from roots to shoots. Taken together, these data suggest OsPT6 plays a broad role in Pi uptake and translocation throughout the plant, whereas OsPT2 is a low-affinity Pi transporter, and functions in translocation of the stored Pi in the plant.  相似文献   

16.
Seo HM  Jung Y  Song S  Kim Y  Kwon T  Kim DH  Jeung SJ  Yi YB  Yi G  Nam MH  Nam J 《Biotechnology letters》2008,30(10):1833-1838
Most high-affinity phosphate transporter genes (OsPTs) in rice were highly induced in roots when phosphate was depleted. OsPT1, however, was highly expressed in primary roots and leaves regardless of external phosphate concentrations. This finding was confirmed histochemically using transgenic rice plants that express the GUS reporter gene under the control of the OsPT1 promoter, which exhibited high GUS activity even in the phosphate sufficient condition. Furthermore, transgenic rice plants overexpressing the OsPT1 gene accumulated almost twice as much phosphate in the shoots as did wild-type plants. As a result, transgenic plants had more tillers than did wild-type plants, which is a typical physiological indicator for phosphate status in rice.  相似文献   

17.
Qin L  Zhao J  Tian J  Chen L  Sun Z  Guo Y  Lu X  Gu M  Xu G  Liao H 《Plant physiology》2012,159(4):1634-1643
Legume biological nitrogen (N) fixation is the most important N source in agroecosystems, but it is also a process requiring a considerable amount of phosphorus (P). Therefore, developing legume varieties with effective N(2) fixation under P-limited conditions could have profound significance for improving agricultural sustainability. We show here that inoculation with effective rhizobial strains enhanced soybean (Glycine max) N(2) fixation and P nutrition in the field as well as in hydroponics. Furthermore, we identified and characterized a nodule high-affinity phosphate (Pi) transporter gene, GmPT5, whose expression was elevated in response to low P. Yeast heterologous expression verified that GmPT5 was indeed a high-affinity Pi transporter. Localization of GmPT5 expression based on β-glucuronidase staining in soybean composite plants with transgenic roots and nodules showed that GmPT5 expression occurred principally in the junction area between roots and young nodules and in the nodule vascular bundles for juvenile and mature nodules, implying that GmPT5 might function in transporting Pi from the root vascular system into nodules. Overexpression or knockdown of GmPT5 in transgenic composite soybean plants altered nodulation and plant growth performance, which was partially dependent on P supply. Through both in situ and in vitro (33)P uptake assays using transgenic soybean roots and nodules, we demonstrated that GmPT5 mainly functions in transporting Pi from roots to nodules, especially under P-limited conditions. We conclude that the high-affinity Pi transporter, GmPT5, controls Pi entry from roots to nodules, is critical for maintaining Pi homeostasis in nodules, and subsequently regulates soybean nodulation and growth performance.  相似文献   

18.
利用PCR技术从毛白杨基因组DNA中扩增获得花器官发育相关的SEPALLATA2类似基因PtSEP25′侧翼约2.3kb的一段序列,经PlantCARE序列分析表明,该序列中含有启动子特征的保守序列及多种光应答元件,初步推测其为PtSEP2基因启动子.进一步以GUS为报告基因,构建了pPtSEP2 promoter::...  相似文献   

19.
The Arabidopsis thaliana THI1 protein is involved in thiamine biosynthesis and is targeted to both chloroplasts and mitochondria by N-terminal control regions. To investigate thi1 expression, a series of thi1 promoter deletions were fused to the beta-glucuronidase (GUS) reporter gene. Transgenic plants were generated and expression patterns obtained under different environmental conditions. The results show that expression derived from the thi1 promoter is detected early on during development and continues throughout the plant's life cycle. High levels of GUS expression are observed in both shoots and roots during vegetative growth although, in roots, expression is restricted to the vascular system. Deletion analysis of the thi1 promoter region identified a region that is responsive to light. The smallest fragment (designated Pthi322) encompasses 306 bp and possesses all the essential signals for tissue specificity, as well as responsiveness to stress conditions such as sugar deprivation, high salinity, and hypoxia.  相似文献   

20.
Negative Regulation of Phosphate Starvation-Induced Genes   总被引:14,自引:0,他引:14       下载免费PDF全文
Phosphate (Pi) deficiency is a major nutritional problem faced by plants in many agro-ecosystems. This deficiency results in altered gene expression leading to physiological and morphological changes in plants. Altered gene expression is presumed to be due to interaction of regulatory sequences (cis-elements) present in the promoters with DNA binding factors (trans-factors). In this study, we analyzed the expression and DNA-protein interaction of promoter regions of Pi starvation-induced genes AtPT2 and TPSI1. AtPT2 encodes the high-affinity Pi transporter in Arabidopsis, whereas TPSI1 codes for a novel gene induced in the Pi-starved tomato (Lycopersicon esculentum). Expression of AtPT2 was induced rapidly under Pi deficiency and increased with decreasing concentrations of Pi. Abiotic stresses except Pi starvation had no affect on the expression of TPSI1. DNA mobility-shift assays indicated that specific sequences of AtPT2 and TPSI1 promoter interact with nuclear protein factors. Two regions of AtPT2 and TPSI1 promoters specifically bound nuclear protein factors from Pi-sufficient plants. Interestingly, the DNA binding activity disappeared during Pi starvation, leading to the hypothesis that Pi starvation-induced genes may be under negative regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号