首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
 选用在土壤磷水平为5~7mgP·kg-1土的条件下筛选出来的不同磷效率的4个冬小麦品种,采用盆栽试验研究了有效磷为3.2mgP·kg-1土时的磷效率、磷吸收效率、磷利用效率及土壤水分对这些指标的影响。结果表明:在有效磷很低的土壤上,“磷高效”品种小偃54和81(85)5—3—3—3在幼苗期并未表现出较高的磷效率。尽管这两个品种的磷吸收效率显著地高于NC37和京411,但由于它们的磷利用效率相对低于京411,从而使磷效率并未显著地提高。土壤水分对4个品种的磷吸收效率和利用效率均有显著影响。  相似文献   

3.
两种基因型小麦光合作用对NaHSO3响应的差别   总被引:15,自引:0,他引:15  
两种不同基因型小麦京411(J411,北京地区高产小麦品种)和小偃54(X54,一种远源杂交品种)的光合作用对低浓度NaHS03处理的响应不同。NaHS031mmol/L处理能够提高京411在CO2浓度为350和900μL/L的空气中的净光合速率;而对小偃54,在这两种情况下的净光合速率均无明显影响。以往的研究表明NaHS03促进光合作用的原因类似于PMS(Phenazine methosulfate),都是增加了ATP的合成。此文再次证明并发现经过NaHS031mmol/L处理后,京411叶片作用光关闭后叶绿素荧光瞬时上升的幅度提高,远红光后P700^ (reaction center cholorophyll of PSI)再还原的半时间缩短,表明NaHS03可以促进小麦京411中围绕PSI循环电子传递及其耦联的磷酸化。然而,NaHS03对小偃54的作用光关闭后叶绿素荧光瞬时上升的幅度及远红光后P700^ 再还原的半时间均无明显影响。与小麦京411相比较,小偃54的作用光停止后叶绿素荧光瞬时上升的幅度增大,而且其在远红光后P700^ 再还原的半时间更短,表明小偃54的循环电子传递的能力远高于京411的。两种不同基因型小麦对NaHS03的响应不同很可能是由于二者在循环电子传递能力上有很大的差别。  相似文献   

4.
Several phosphate transporters (PTs) that belong to the Pht2 family have been released in bioinformatics databases, but only a few members of this family have been functionally characterized. In this study, we found that wheat TaPHT2;1 shared high identity with a subset of Pht2 in diverse plants. Expression analysis revealed that TaPHT2;1 was strongly expressed in the leaves, was up-regulated by low Pi stress, and exhibited a circadian rhythmic expression pattern. TaPHT2;1–green fluorescent protein fusions in the leaves of tobacco and wheat were specifically detected in the chloroplast envelop. TaPHT2;1 complemented the Pi transporter activities in a yeast mutant with a defect in Pi uptake. Knockdown expression of TaPHT2;1 significantly reduced Pi concentration in the chloroplast under sufficient (2 mM Pi) and deficient Pi (100 μM Pi) conditions, suggesting that TaPHT2;1 is crucial in the mediation of Pi translocation from the cytosol to the chloroplast. The down-regulated expression of TaPHT2;1 resulted in reduced photosynthetic capacities, total P contents, and accumulated P amounts in plants under sufficient and deficient Pi conditions, eventually leading to worse plant growth phenotypes. The TaPHT2;1 knockdown plants exhibited pronounced decrease in accumulated phosphorus in sufficient and deficient Pi conditions, suggesting that TaPHT2;1 is an important factor to associate with a distinct P signaling that up-regulates other PT members to control Pi acquisition and translocation within plants. Therefore, TaPHT2;1 is a key member of the Pht2 family involved in Pi translocation, and that it can function in the improvement of phosphorus usage efficiency in wheat.  相似文献   

5.
两个小麦磷转运蛋白基因的分离、功能鉴定和表达研究   总被引:7,自引:0,他引:7  
磷是能量代谢、核酸以及许多生物膜合成的重要底物。在光合作用、呼吸作用等过程中发挥了重要作用。中国大多数小麦产区的土壤存在着缺磷的问题。磷饥饿给小麦生产造成了很大损失。培育耐低磷小麦是解决这一问题的一个重要途径。在磷饥饿的过程中,哪些基因的表达发生了变化.它们是如何变化的,弄清楚这些问题对于培育转基因耐低磷小麦具有重要的意义。磷转运蛋白基因在植物吸收磷的过程中发挥着重要作用。利用RT—PCR的方法,我们从普通小麦“小偃54”中分离了两个磷转运蛋白基因TaPT8和TaPHT2;1。通过与酵母突变体互补分析表明这两个基因都能够与磷吸收功能存在缺陷的酵母突变体实现功能互补,在低磷条件下有促进酵母突变体吸收磷的作用。进一步分析表明TaPT8属于Pht1家族。TaPHT2;1属于Pht2家族。运用RQRT—PCR的方法进行分析后发现TaPT8在根中表达,受磷饥饿的诱导;TaPHT2;1主要在绿色组织中表达,受磷饥饿的抑制,受光的诱导。TaPT8可能主要参与了小麦的根从土壤中吸收磷的过程。TaPHT2;1可能在磷从细胞质向叶绿体内转运的过程中发挥了重要作用。  相似文献   

6.
The photodamage processes of PSⅠ particles isolated from two wheat cultivars “Jing 411” and “Xiaoyan 54” were studied by comparing the difference in spectroscopic properties. It was found that high light intensity caused the damage of pigments in PSⅠ, especially Chl a molecules with maximum absorption at 683 nm is very sensitive to high light. The change in fluorescence spectra revealed that photodamage also led to the damage of the process of energy transfer in PSⅠ. In the PSⅠ particles “Xiaoyan 54”, the absorption of Chl a molecules at 683 nm slightly decreased at the beginning of illumination and meanwhile the fluorescence become stronger, but the absorption become stable rather long, and declining after 40 min. On the other hand, PSⅠ particles of “Jing 411” showed no such changes during the process of photodamage. Presumably in PSⅠ of “Xiaoyan 54”, excessive energy was distributed to long wave chlorophyll molecules and the number of antenna pigment molecules was less, so that less energy was transferred to the reaction center P700 and thus it was protected. This is the possible reason why “Xiaoyan 54” was more resistant to photooxidation.  相似文献   

7.
Versaw WK  Harrison MJ 《The Plant cell》2002,14(8):1751-1766
The uptake and distribution of Pi in plants requires multiple Pi transport systems that must function in concert to maintain homeostasis throughout growth and development. The Pi transporter PHT2;1 of Arabidopsis shares similarity with members of the Pi transporter family, which includes Na(+)/Pi symporters of fungal and animal origin and H(+)/Pi symporters of bacterial origin. Sequence comparisons between proteins of this family revealed that plant members possess extended N termini, which share features with chloroplast transit peptides. Localization of a PHT2;1-green fluorescent protein fusion protein indicates that it is present in the chloroplast envelope. A Pi transport function for PHT2;1 was confirmed in yeast using a truncated version of the protein lacking its transit peptide, which allowed targeting to the plasma membrane. To assess the in vivo role of PHT2;1 in phosphorus metabolism, we identified a null mutant, pht2;1-1. Analysis of the mutant reveals that PHT2;1 activity affects Pi allocation within the plant and modulates Pi-starvation responses, including the expression of Pi-starvation response genes and the translocation of Pi within leaves.  相似文献   

8.
拟南芥SEN1基因受衰老诱导.将该基因启动子融合报告基因萄聚糖酶(glucuronidase,GUS)基因转入拟南芥,通过染色并测定GUS活性发现,缺氮、缺磷、缺钾诱导叶中SEN1表达,而只有缺磷能导根中SEN1表达.缺磷对根叶中SEN1的诱导被3%葡萄糖和细胞分裂素抑制.3%葡萄糖胺在根和叶中均诱导SEN1表达,外源细胞分裂素不能抑制这种效应.结果表明:SEN1基因可受缺磷信号特异调控,并受糖信号和细胞分裂素负调控;葡萄糖胺能大大促进根和叶中SEN1表达,且不受细胞分裂素的负调控.  相似文献   

9.
10.
11.
Dong L  Zhang X  Liu D  Fan H  Sun J  Zhang Z  Qin H  Li B  Hao S  Li Z  Wang D  Zhang A  Ling HQ 《PloS one》2010,5(10):e13548
The bread-making quality of wheat is strongly influenced by multiple low molecular weight glutenin subunit (LMW-GS) proteins expressed in the seeds. However, the organization, recombination and expression of LMW-GS genes and their functional mechanism in bread-making are not well understood. Here we report a systematic molecular analysis of LMW-GS genes located at the orthologous Glu-3 loci (Glu-A3, B3 and D3) of bread wheat using complementary approaches (genome wide characterization of gene members, expression profiling, proteomic analysis). Fourteen unique LMW-GS genes were identified for Xiaoyan 54 (with superior bread-making quality). Molecular mapping and recombination analyses revealed that the three Glu-3 loci of Xiaoyan 54 harbored dissimilar numbers of LMW-GS genes and covered different genetic distances. The number of expressed LMW-GS in the seeds was higher in Xiaoyan 54 than in Jing 411 (with relatively poor bread-making quality). This correlated with the finding of higher numbers of active LMW-GS genes at the A3 and D3 loci in Xiaoyan 54. Association analysis using recombinant inbred lines suggested that positive interactions, conferred by genetic combinations of the Glu-3 locus alleles with more numerous active LMW-GS genes, were generally important for the recombinant progenies to attain high Zeleny sedimentation value (ZSV), an important indicator of bread-making quality. A higher number of active LMW-GS genes tended to lead to a more elevated ZSV, although this tendency was influenced by genetic background. This work provides substantial new insights into the genomic organization and expression of LMW-GS genes, and molecular genetic evidence suggesting that these genes contribute quantitatively to bread-making quality in hexaploid wheat. Our analysis also indicates that selection for high numbers of active LMW-GS genes can be used for improvement of bread-making quality in wheat breeding.  相似文献   

12.
Phosphate (Pi) deficiency is one of the leading causes of loss in crop productivity. Plants respond to Pi deficiency by increasing Pi acquisition and remobilization involving organic and inorganic Pi transporters. Here, we report the functional characterization of a putative organic Pi transporter, Glycerol-3-phosphate permease (G3Pp) family, comprising five members (AtG3Pp1 to -5) in Arabidopsis (Arabidopsis thaliana). AtG3Pp1 and AtG3Pp2 showed 24-and 3-fold induction, respectively, in the roots of Pi-deprived seedlings, whereas Pi deficiency-mediated induction of AtG3Pp3 and -4 was evident in both roots and shoots. Furthermore, promoter-β-glucuronidase (GUS) fusion transgenics were generated for AtG3Pp2 to -5 for elucidation of their in planta role in Pi homeostasis. During Pi starvation, there was a strong expression of the reporter gene driven by AtG3Pp4 promoter in the roots, shoots, anthers, and siliques, whereas GUS expression was specific either to the roots (AtG3Pp3) or to stamens and siliques (AtG3Pp5) in other promoter-GUS fusion transgenics. Quantification of reporter gene activities further substantiated differential responses of AtG3Pp family members to Pi deprivation. A distinct pattern of reporter gene expression exhibited by AtG3Pp3 and AtG3Pp5 during early stages of germination also substantiated their potential roles during seedling ontogeny. Furthermore, an AtG3Pp4 knockdown mutant exhibited accentuated total lateral root lengths under +phosphorus and -phosphorus conditions compared with the wild type. Several Pi starvation-induced genes involved in root development and/or Pi homeostasis were up-regulated in the mutant. A 9-fold induction of AtG3Pp3 in the mutant provided some evidence for a lack of functional redundancy in the gene family. These results thus reflect differential roles of members of the G3Pp family in the maintenance of Pi homeostasis.  相似文献   

13.
Promoters of phosphate transporter genes MtPT1 and MtPT2 of Medicago truncatula were isolated by utilizing the gene-space sequence information and by screening of a genomic library, respectively. Two reporter genes, beta-glucuronidase (GUS) and green fluorescent protein (GFP) were placed under the control of the MtPT1 and MtPT2 promoters. These chimeric transgenes were introduced into Arabidopsis thaliana and transgenic roots of M. truncatula, and expression patterns of the reporter genes were assayed in plants grown under different phosphate (Pi) concentrations. The expression of GUS and GFP was only observed in root tissues, and the levels of expression decreased with increasing concentrations of Pi. GUS activities in roots of transgenic plants decreased 10-fold when the plants were transferred from 10 microM to 2 mM Pi conditions, however, when the plants were transferred back to 10 microM Pi conditions, GUS expression reversed back to the original level. The two promoters lead to different expression patterns inside root tissues. The MtPT1 promoter leads to preferential expression in root epidermal and cortex cells, while MtPT2 promoter results in strong expression in the vascular cylinder in the center of roots. Promoter deletion analyses revealed possible sequences involved in root specificity and Pi responsiveness. The promoters are valuable tools for defined engineering of plants, particularly for root-specific expression of transgenes.  相似文献   

14.
15.
AtNPF7.3/AtNRT1.5, which is a nitrate transporter that drives root-to-shoot transport of NO3?, is also involved in modulating the response to K+ deprivation in Arabidopsis by affecting root development and K+ transport. However, whether NPF7.3/NRT1.5 functions in regulating plant responses to deficiencies of other nutrients remains unknown. In this study, we found that the expression of AtNPF7.3/AtNRT1.5 was predominant in the roots and was substantially induced by phosphate (Pi) starvation. The atnrt1.5 mutants displayed conspicuously longer primary roots along with a significantly reduced lateral root density under Pi-deficient conditions than did the wild-type plants, and these morphological differences in the roots were eliminated to a certain extent by the ethylene synthesis antagonist Co2+. Further analyses revealed that the expression of important Pi starvation-induced genes, which are directly involved in Pi transport, mobilization and distribution, were significantly higher in the atnrt1.5 mutants than that in the wild-type plants under Pi-starvation conditions; therefore, the atnrt1.5 mutants retained higher tissue Pi concentrations. Taken together, our results suggest that NPF7.3/NRT1.5 is an important component in the regulation of phosphate deficiency responses in Arabidopsis.  相似文献   

16.
Wang X  Yi K  Tao Y  Wang F  Wu Z  Jiang D  Chen X  Zhu L  Wu P 《Plant, cell & environment》2006,29(10):1924-1935
The involvement of cytokinins (CTKs) in the repression of phosphate (Pi)-starvation signalling has been widely documented. However, the full physiological and molecular relevance of this role remains unclear. To gain further insights into the regulation system of CTK repression of Pi-starvation signalling, a global analysis of gene expression events in rice seedlings under Pi starvation, and the exogenous CTK treatment under Pi-sufficient (+P) and Pi-deficient (-P) conditions, was conducted using oligonucleotide array analysis. Physiological and biochemical adaptation was observed after 10 d Pi starvation in rice seedlings. A global reduction of the Pi-starvation signalling was detected after 3 d treatment of exogenous CTK. Expression profiling data indicate that, together with a significant increase of intracellular Pi content, many expression changes responsive to Pi starvation were reversed by exogenous CTK treatment while CTK-responsive genes behaved normally under -P condition. These results suggest that the interplay of CTK signal and Pi-starvation response can be partially explained by the rise of Pi concentration after exogenous CTK treatment. Microarray data also revealed that a small number of genes have different CTK response patterns under different Pi levels, suggesting a subtle interaction between CTK and Pi-starvation signalling pathway.  相似文献   

17.
18.
Zhou J  Jiao F  Wu Z  Li Y  Wang X  He X  Zhong W  Wu P 《Plant physiology》2008,146(4):1673-1686
Previous research has demonstrated that AtPHR1 plays a central role in phosphate (Pi)-starvation signaling in Arabidopsis thaliana. In this work, two OsPHR genes from rice (Oryza sativa) were isolated and designated as OsPHR1 and OsPHR2 based on amino acid sequence homology to AtPHR1. Their functions in Pi signaling in rice were investigated using transgenic plants. Our results showed that both OsPHR1 and OsPHR2 are involved in Pi-starvation signaling pathway by regulation of the expression of Pi-starvation-induced genes, whereas only OsPHR2 overexpression results in the excessive accumulation of Pi in shoots under Pi-sufficient conditions. Under Pi-sufficient conditions, overexpression of OsPHR2 mimics Pi-starvation stress in rice with enhanced root elongation and proliferated root hair growth, suggesting the involvement of OsPHR2 in Pi-dependent root architecture alteration by both systematic and local pathways. In OsPHR2-overexpression plants, some Pi transporters were up-regulated under Pi-sufficient conditions, which correlates with the strongly increased content of Pi. The mechanism behind the OsPHR2 regulated Pi accumulation will provide useful approaches to develop smart plants with high Pi efficiency.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号