首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Substitutions on the xylan main chain are widely accepted to limit plant cell wall degradability and acetylations are considered as one of the most important obstacles. Hence, understanding the modes of action of a range of acetylxylan esterases (AcXEs) is of ample importance not only to increase the understanding of the enzymology of plant decay/bioremediation but also to enable efficient bioconversion of plant biomass.

Methods

In this study, the modes of action of acetylxylan esterases (AcXEs) belonging to carbohydrate esterase (CE) families 1, 4, 5 and 6 on xylooligosaccharides generated from hardwood acetyl glucuronoxylan were compared using MALDI ToF MS. Supporting data were obtained by following enzymatic deacetylation by 1H NMR spectroscopy.

Conclusions

None of the used enzymes were capable of complete deacetylation, except from linear xylooligosaccharides which were completely deacetylated by some of the esterases in the presence of endoxylanase. A clear difference was observed between the performance of the serine-type esterases of CE families 1, 5 and 6, and the aspartate-metalloesterases of family CE4. The difference is mainly due to the inability of CE4 AcXEs to catalyze deacetylation of 2,3-di-O-acetylated xylopyranosyl residues. Complete deacetylation of a hardwood acetyl glucuronoxylan requires additional deacetylating enzyme(s).

General significance

The results contribute to the understanding of microbial degradation of plant biomass and outline the way to achieve complete saccharification of plant hemicelluloses which did not undergo alkaline pretreatment.  相似文献   

2.
Fungal enzyme sets for plant polysaccharide degradation   总被引:3,自引:0,他引:3  
Enzymatic degradation of plant polysaccharides has many industrial applications, such as within the paper, food, and feed industry and for sustainable production of fuels and chemicals. Cellulose, hemicelluloses, and pectins are the main components of plant cell wall polysaccharides. These polysaccharides are often tightly packed, contain many different sugar residues, and are branched with a diversity of structures. To enable efficient degradation of these polysaccharides, fungi produce an extensive set of carbohydrate-active enzymes. The variety of the enzyme set differs between fungi and often corresponds to the requirements of its habitat. Carbohydrate-active enzymes can be organized in different families based on the amino acid sequence of the structurally related catalytic modules. Fungal enzymes involved in plant polysaccharide degradation are assigned to at least 35 glycoside hydrolase families, three carbohydrate esterase families and six polysaccharide lyase families. This mini-review will discuss the enzymes needed for complete degradation of plant polysaccharides and will give an overview of the latest developments concerning fungal carbohydrate-active enzymes and their corresponding families.  相似文献   

3.

Background

Microbial degradation of acetylated plant hemicelluloses involves besides enzymes cleaving the glycosidic linkages also deacetylating enzymes. A detailed knowledge of the mode of action of these enzymes is important in view of the development of efficient bioconversion of plant materials that did not undergo alkaline pretreatment leading to hydrolysis of ester linkages.

Methods

In this work deacetylation of hardwood acetylglucuronoxylan by acetylxylan esterases from Streptomyces lividans (carbohydrate esterase family 4) and Orpinomyces sp. (carbohydrate esterase family 6) was monitored by 1H-NMR spectroscopy.

Results

The 1H-NMR resonances of all acetyl groups in the polysaccharide were fully assigned. The targets of both enzymes are 2- and 3-monoacetylated xylopyranosyl residues and, in the case of the Orpinomyces sp. enzyme, also the 2,3-di-O-acetylated xylopyranosyl residues. Both enzymes do not recognize as a substrate the 3-O-acetyl group on xylopyranosyl residues α-1,2-substituted with 4-O-methyl-d-glucuronic acid.

Conclusions

The 1H-NMR spectroscopy approach to study positional and substrate specificity of AcXEs outlined in this work appears to be a simple way to characterize catalytic properties of enzymes belonging to various CE families.

Significance

The results contribute to development of efficient and environmentally friendly procedures for enzymatic degradation of plant biomass.  相似文献   

4.
Complete enzymatic degradation of plant polysaccharides is a result of combined action of various carbohydrate-active enzymes (CAZymes). In this paper, we demonstrate the potential of the filamentous fungus Scytalidium candidum 3C for processing of plant biomass. Structural annotation of the improved assembly of S. candidum 3C genome and functional annotation of CAZymes revealed putative gene sequences encoding such proteins. A total of 190 CAZyme-encoding genes were identified, including 104 glycoside hydrolases, 52 glycosyltransferases, 28 oxidative enzymes, and 6 carbohydrate esterases. In addition, 14 carbohydrate-binding modules were found. Glycoside hydrolases secreted during the growth of S. candidum 3C in three media were analyzed with a variety of substrates. Mass spectrometry analysis of the fungal culture liquid revealed the presence of peptides identical to 36 glycoside hydrolases, three proteins without known enzymatic function belonging to the same group of families, and 11 oxidative enzymes. The activity of endohemicellulases was determined using specially synthesized substrates in which the glycosidic bond between monosaccharide residues was replaced by a thiolinkage. During analysis of the CAZyme profile of S. candidum 3C, four β-xylanases from the GH10 family and two β-glucanases from the GH7 and GH55 families were detected, partially purified, and identified.  相似文献   

5.
The plant cell wall, which consists of a highly complex array of interconnecting polysaccharides, is the most abundant source of organic carbon in the biosphere. Microorganisms that degrade the plant cell wall synthesize an extensive portfolio of hydrolytic enzymes that display highly complex molecular architectures. To unravel the intricate repertoire of plant cell wall-degrading enzymes synthesized by the saprophytic soil bacterium Cellvibrio japonicus, we sequenced and analyzed its genome, which predicts that the bacterium contains the complete repertoire of enzymes required to degrade plant cell wall and storage polysaccharides. Approximately one-third of these putative proteins (57) are predicted to contain carbohydrate binding modules derived from 13 of the 49 known families. Sequence analysis reveals approximately 130 predicted glycoside hydrolases that target the major structural and storage plant polysaccharides. In common with that of the colonic prokaryote Bacteroides thetaiotaomicron, the genome of C. japonicus is predicted to encode a large number of GH43 enzymes, suggesting that the extensive arabinose decorations appended to pectins and xylans may represent a major nutrient source, not just for intestinal bacteria but also for microorganisms that occupy terrestrial ecosystems. The results presented here predict that C. japonicus possesses an extensive range of glycoside hydrolases, lyases, and esterases. Most importantly, the genome of C. japonicus is remarkably similar to that of the gram-negative marine bacterium, Saccharophagus degradans 2-40(T). Approximately 50% of the predicted C. japonicus plant-degradative apparatus appears to be shared with S. degradans, consistent with the utilization of plant-derived complex carbohydrates as a major substrate by both organisms.  相似文献   

6.
The cell wall plays a key role in controlling the size and shape of the plant cell during plant development and in the interactions of the plant with its environment. The cell wall structure is complex and contains various components such as polysaccharides, lignin and proteins whose composition and concentration change during plant development and growth. Many studies have revealed changes in cell walls which occur during cell division, expansion, and differentiation and in response to environmental stresses; i.e. pathogens or mechanical stress. Although many proteins and enzymes are necessary for the control of cell wall organization, little information is available concerning them. An important advance was made recently concerning cell wall organization as plant enzymes that belong to the superfamily of glycoside hydrolases and transglycosidases were identified and characterized; these enzymes are involved in the degradation of cell wall polysaccharides. Glycoside hydrolases have been characterized using molecular, genetic and biochemical approaches. Many genes encoding these enzymes have been identified and functional analysis of some of them has been performed. This review summarizes our current knowledge about plant glycoside hydrolases that participate in the degradation and reorganisation of cell wall polysaccharides in plants focussing particularly on those from Arabidopsis thaliana.  相似文献   

7.
Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.  相似文献   

8.
Plant protein inhibitors of cell wall degrading enzymes   总被引:2,自引:0,他引:2  
Plant cell walls, which consist mainly of polysaccharides (i.e. cellulose, hemicelluloses and pectins), play an important role in defending plants against pathogens. Most phytopathogenic microorganisms secrete an array of cell wall degrading enzymes (CWDEs) capable of depolymerizing the polysaccharides in the plant host wall. In response, plants have evolved a diverse battery of defence responses including protein inhibitors of these enzymes. These include inhibitors of pectin degrading enzymes such as polygalacturonases, pectinmethyl esterases and pectin lyases, and hemicellulose degrading enzymes such as endoxylanases and xyloglucan endoglucanases. The discovery of these plant inhibitors and the recent resolution of their three-dimensional structures, free or in complex with their target enzymes, provide new lines of evidence regarding their function and evolution in plant-pathogen interactions.  相似文献   

9.
BackgroundThe backbone structure of many hemicelluloses is acetylated, which presents a challenge when the objective is to convert corresponding polysaccharides to fermentable sugars or else recover hemicelluloses for biomaterial applications. Carbohydrate esterases (CE) can be harnessed to overcome these challenges.MethodsEnzymes from different CE families, AnAcXE (CE1), OsAcXE (CE6), and MtAcE (CE16) were compared based on action and position preference towards acetyl-4-O-methylglucuronoxylan (MGX) and acetyl-galactoglucomannan (GGM). To determine corresponding positional preferences, the relative rate of acetyl group released by each enzyme was analyzed by real time 1H NMR.ResultsAnAcXE (CE1) showed lowest specific activity towards MGX, where OsAcXE (CE6) and MtAcE were approximately four times more active than AnAcXE (CE1). MtAcE (CE16) was further distinguished by demonstrating 100 times higher activity on GGM compared to AnAcXE (CE1) and OsAcXE (CE6), and five times higher activity on GGM than MGX. Following 24 h incubation, all enzymes removed between 78 and 93% of total acetyl content from MGX and GGM, where MtAcE performed best on both substrates.Major conclusionsConsidering action on MGX, all esterases showed preference for doubly substituted xylopyranosyl residues (2,3-O-acetyl-Xylp). Considering action on GGM, OsAcXE (CE6) preferentially targeted 2-O-acetyl-mannopyranosyl residues (2-O-acetyl-Manp) whereas AnAcXE (CE1) demonstrated highest activity towards 3-O-acetyl-Manp positions; regiopreference of MtAcE (CE16) on GGM was less clear.General significanceThe current comparative analysis identifies options to control the position of acetyl group release at initial stages of reaction, and enzyme combinations likely to accelerate deacetylation of major hemicellulose sources.  相似文献   

10.
11.
Physiological roles of plant glycoside hydrolases   总被引:2,自引:0,他引:2  
Minic Z 《Planta》2008,227(4):723-740
The functions of plant glycoside hydrolases and transglycosidases have been studied using different biochemical and molecular genetic approaches. These enzymes are involved in the metabolism of various carbohydrates containing compounds present in the plant tissues. The structural and functional diversity of the carbohydrates implies a vast spectrum of enzymes involved in their metabolism. Complete genome sequence of Arabidopsis and rice has allowed the classification of glycoside hydrolases in different families based on amino acid sequence data. The genomes of these plants contain 29 families of glycoside hydrolases. This review summarizes the current research on plant glycoside hydrolases concerning their principal functional roles, which were attributed to different families. The majority of these plant glycoside hydrolases are involved in cell wall polysaccharide metabolism. Other functions include their participation in the biosynthesis and remodulation of glycans, mobilization of energy, defence, symbiosis, signalling, secondary plant metabolism and metabolism of glycolipids.  相似文献   

12.
The depolymerization of complex glycans is an important biological process that is of considerable interest to environmentally relevant industries. β-Mannose is a major component of plant structural polysaccharides and eukaryotic N-glycans. These linkages are primarily cleaved by glycoside hydrolases, although recently, a family of glycoside phosphorylases, GH130, have also been shown to target β-1,2- and β-1,4-mannosidic linkages. In these phosphorylases, bond cleavage was mediated by a single displacement reaction in which phosphate functions as the catalytic nucleophile. A cohort of GH130 enzymes, however, lack the conserved basic residues that bind the phosphate nucleophile, and it was proposed that these enzymes function as glycoside hydrolases. Here we show that two Bacteroides enzymes, BT3780 and BACOVA_03624, which lack the phosphate binding residues, are indeed β-mannosidases that hydrolyze β-1,2-mannosidic linkages through an inverting mechanism. Because the genes encoding these enzymes are located in genetic loci that orchestrate the depolymerization of yeast α-mannans, it is likely that the two enzymes target the β-1,2-mannose residues that cap the glycan produced by Candida albicans. The crystal structure of BT3780 in complex with mannose bound in the −1 and +1 subsites showed that a pair of glutamates, Glu227 and Glu268, hydrogen bond to O1 of α-mannose, and either of these residues may function as the catalytic base. The candidate catalytic acid and the other residues that interact with the active site mannose are conserved in both GH130 mannoside phosphorylases and β-1,2-mannosidases. Functional phylogeny identified a conserved lysine, Lys199 in BT3780, as a key specificity determinant for β-1,2-mannosidic linkages.  相似文献   

13.
The hydrolysis of the plant cell wall by microbial glycoside hydrolases and esterases is the primary mechanism by which stored organic carbon is utilized in the biosphere, and thus these enzymes are of considerable biological and industrial importance. Plant cell wall-degrading enzymes in general display a modular architecture comprising catalytic and non-catalytic modules. The X4 modules in glycoside hydrolases represent a large family of non-catalytic modules whose function is unknown. Here we show that the X4 modules from a Cellvibrio japonicus mannanase (Man5C) and arabinofuranosidase (Abf62A) bind to polysaccharides, and thus these proteins comprise a new family of carbohydrate-binding modules (CBMs), designated CBM35. The Man5C-CBM35 binds to galactomannan, insoluble amorphous mannan, glucomannan, and manno-oligosaccharides but does not interact with crystalline mannan, cellulose, cello-oligosaccharides, or other polysaccharides derived from the plant cell wall. Man5C-CBM35 also potentiates mannanase activity against insoluble amorphous mannan. Abf62A-CBM35 interacts with unsubstituted oat-spelt xylan but not substituted forms of the hemicellulose or xylo-oligosaccharides, and requires calcium for binding. This is in sharp contrast to other xylan-binding CBMs, which interact in a calcium-independent manner with both xylo-oligosaccharides and decorated xylans.  相似文献   

14.
15.
Novel molecular probes have been developed for the analysis and detection of polysaccharides in plant cell walls using carbohydrate-binding modules (CBMs) derived from modular glycoside hydrolases belonging to families 2a, 6, and 29. Recombinant forms of these proteins containing his-tags, in conjunction with anti-his-tag detection, provide a flexible system that utilizes CBMs as molecular probes in a range of applications. Assays for the rapid analysis of the binding of CBMs to polysaccharides and oligosaccharides using nitrocellulose-based CBM macroarrays and microtiter plate-based CBM capture and competitive-inhibition assays are described. We also demonstrate the use of CBMs with his-tags for the localization of their target ligands in planta. The generation of molecular probes from other families of CBMs will dramatically increase the repertoire of molecular probes available to determine the developmental and functional aspects of plant cell walls.  相似文献   

16.
Reflecting the diverse chemistry of plant cell walls, microorganisms that degrade these composite structures synthesize an array of glycoside hydrolases. These enzymes are organized into sequence-, mechanism-, and structure-based families. Genomic data have shown that several organisms that degrade the plant cell wall contain a large number of genes encoding family 43 (GH43) glycoside hydrolases. Here we report the biochemical properties of the GH43 enzymes of a saprophytic soil bacterium, Cellvibrio japonicus, and a human colonic symbiont, Bacteroides thetaiotaomicron. The data show that C. japonicus uses predominantly exo-acting enzymes to degrade arabinan into arabinose, whereas B. thetaiotaomicron deploys a combination of endo- and side chain-cleaving glycoside hydrolases. Both organisms, however, utilize an arabinan-specific α-1,2-arabinofuranosidase in the degradative process, an activity that has not previously been reported. The enzyme can cleave α-1,2-arabinofuranose decorations in single or double substitutions, the latter being recalcitrant to the action of other arabinofuranosidases. The crystal structure of the C. japonicus arabinan-specific α-1,2-arabinofuranosidase, CjAbf43A, displays a five-bladed β-propeller fold. The specificity of the enzyme for arabinan is conferred by a surface cleft that is complementary to the helical backbone of the polysaccharide. The specificity of CjAbf43A for α-1,2-l-arabinofuranose side chains is conferred by a polar residue that orientates the arabinan backbone such that O2 arabinose decorations are directed into the active site pocket. A shelflike structure adjacent to the active site pocket accommodates O3 arabinose side chains, explaining how the enzyme can target O2 linkages that are components of single or double substitutions.  相似文献   

17.

Background

Trichoderma reesei CE16 acetyl esterase (AcE) is a component of the plant cell wall degrading system of the fungus. The enzyme behaves as an exo-acting deacetylase removing acetyl groups from non-reducing end sugar residues.

Methods

In this work we demonstrate this exo-deacetylating activity on natural acetylated xylooligosaccharides using MALDI ToF MS.

Results

The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most prominent target is the 3-O-acetyl group at the non-reducing terminal Xylp residues of linear neutral xylooligosaccharides or on aldouronic acids carrying MeGlcA at the non-reducing terminus. Deacetylation of the non-reducing end sugar may involve migration of acetyl groups to position 4, which also serves as substrate of the TrCE16 esterase.

Conclusion

Concerted action of CtGH10 xylanase, an AcXE and TrCE16 AcE resulted in close to complete deacetylation of neutral xylooligosaccharides, whereas substitution with MeGlcA prevents removal of acetyl groups from only a small fraction of the aldouronic acids. Experiments with diacetyl derivatives of methyl β-d-xylopyranoside confirmed that the best substrate of TrCE16 AcE is 3-O-acetylated Xylp residue followed by 4-O-acetylated Xylp residue with a free vicinal hydroxyl group.

General significance

This study shows that CE16 acetyl esterases are crucial enzymes to achieve complete deacetylation and, consequently, complete the saccharification of acetylated xylans by xylanases, which is an important task of current biotechnology.  相似文献   

18.
Cellulose acetate (CA) was found to be a substrate of several acetyl xylan esterases (AXE). Eight AXE from different carbohydrate esterase (CE) families were tested on their activity against CA with a degree of substitution of 0.7 and 1.4. The classification of the AXEs into CE families according to their structure by hydrophobic cluster analysis followed clearly their activity against CA. Within the same CE family similar, and between the CE families different deacetylation behaviours could be observed. Furthermore, each esterase family showed a distinct regioselective mode of action. The CE 1 family enzymes regioselectively cleaved the substituents in C2- and C3-position, while CE 5 family enzymes only cleaved the acetyl groups in C2-position. CE 4 family enzymes seemed to interact only with the substituents in C3-position. Evidence was found that the deacetylation reaction of the CE 1 family enzymes proceeded faster in C2- than in C3-position of CA. The enzymes were able to cleave acetyl groups from fully substituted anhydroglucose units.  相似文献   

19.
An evolving hierarchical family classification for glycosyltransferases   总被引:4,自引:0,他引:4  
Glycosyltransferases are a ubiquitous group of enzymes that catalyse the transfer of a sugar moiety from an activated sugar donor onto saccharide or non-saccharide acceptors. Although many glycosyltransferases catalyse chemically similar reactions, presumably through transition states with substantial oxocarbenium ion character, they display remarkable diversity in their donor, acceptor and product specificity and thereby generate a potentially infinite number of glycoconjugates, oligo- and polysaccharides. We have performed a comprehensive survey of glycosyltransferase-related sequences (over 7200 to date) and present here a classification of these enzymes akin to that proposed previously for glycoside hydrolases, into a hierarchical system of families, clans, and folds. This evolving classification rationalises structural and mechanistic investigation, harnesses information from a wide variety of related enzymes to inform cell biology and overcomes recurrent problems in the functional prediction of glycosyltransferase-related open-reading frames.  相似文献   

20.
Feruloyl esterases (Faes) constitute a subclass of carboxyl esterases that specifically hydrolyze the ester linkages between ferulate and polysaccharides in plant cell walls. Until now, the described microbial Faes were mainly from fungi. In this study, we report that Cellulosilyticum ruminicola H1, a previously described fibrolytic rumen bacterium, possesses three different active feruloyl esterases, FaeI, FaeII, and FaeIII. Phylogenetic analysis classified the described bacterial Faes into two types, FaeI and FaeII in type I and FaeIII in type II. Substrate specificity assays indicated that FaeI is more active against the ester bonds in natural hemicelluloses and FaeIII preferentially attacks the ferulate esters with a small moiety, such as methyl groups, while FaeII is active on both types of substrates. Among the three feruloyl esterase genes, faeI was the only one induced significantly by xylose and xylan, while pectin appeared to moderately induce the three genes during the late log phase to stationary phase. Western blot analysis determined that FaeI and FaeIII were secreted and cytoplasmic proteins, respectively, whereas FaeII seemed to be cell associated. The addition of FaeI and FaeII but not FaeIII enhanced the activity of a xylanase on maize cob, suggesting a synergy of the former two with xylanase. Hence, we propose that the three feruloyl esterases work in concert to hydrolyze ferulate esters in natural hemicelluloses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号