首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 838 毫秒
1.
Landscape features are often used as surrogates for biodiversity. While landscape features may perform well as surrogates for coarse metrics of biodiversity such as species richness, their value for monitoring population trends in individual species is virtually unexplored. We compared the performance of a proposed habitat surrogate for birds, percentage cover of vegetation overstory, for two distinct aspects of bird assemblages: community diversity (i.e. species richness) and population trends. We used four different long-term studies of open woodland habitats to test the consistency of the relationship between overstory percentage cover and bird species richness across a large spatial extent (>1000 km) in Australia. We then identified twelve bird species with long-term time-series data to test the relationship between change in overstory cover and populations trends. We found percentage cover performed consistently as a surrogate for species richness in three of the four sites. However, there was no clear pattern in the performance of change in percentage cover as a surrogate for population trends. Four bird species exhibited a significant relationship with change in percentage overstory cover in one study, but this was not found across multiple studies. These results demonstrate a lack of consistency in the relationship between change in overstory cover and population trends among bird species, both within and between geographic regions. Our study demonstrates that biodiversity surrogates representing community-level metrics may be consistent across regions, but provide only limited information about individual species population trends. Understanding the limitations of the information provided by a biodiversity surrogate can inform the appropriate context for its application.  相似文献   

2.
Understanding land abandonment and the resulting changes in land cover provides data for suitable reaction to habitat and species losses this process brings. This study aimed to define land-cover types and their biodiversity, record spatio-temporal changes and detect the trajectories and magnitude of these changes. The study was conducted on the island of Molat in the eastern Adriatic Sea. Land cover was defined for different years (1910, 1959, 1986, 2006) using remote sensing and recent vegetation sampling. The obtained land-cover maps were used for spatio-temporal analysis of land-cover change. Open vegetation units of rocky grassland, mesophilous grasslands and farm land dominated in 1910, covering 90% of the island. The observed changes occurred in trajectories through semi-open towards closed vegetation. In 2006, closed vegetation dominated, covering approximately 70% of the island area. The overall land-cover change was extreme, occurring over 90% of the island surface. Biodiversity analysis was related to the present land-cover types and change trajectories, and showed a considerable decline of species richness towards closed vegetation types. All observed changes were correlated to island depopulation and land abandonment. Re-population and encouragement of agro-pastoral activities should reduce habitat and species loss in the process of secondary succession.  相似文献   

3.
祖悦晴  魏妍儿  张曦文  于德永 《生态学报》2022,42(17):6937-6947
快速的城市化过程带来的生境斑块破碎化及损失会影响物种迁移、捕食等生态活动,对生物多样性构成威胁。然而,现有生态保护区可能无法覆盖其内生物的必要活动范围。生态保护区外的生境斑块对于维持生态过程也具有重要作用,因此识别生态保护区外的关键斑块并加以保护非常重要。以北京市延庆区为研究区,划分两种生境斑块,即核心生境斑块和潜在生境斑块,并基于图论构建生境网络。考虑地表覆盖类型、坡度、人类活动等因素构建生境阻力面。结合未来土地利用类型变化的模拟,研究城市化过程对区域生境网络和景观连接度的影响,选用CLUE-S模型模拟土地利用类型变化的格局。结合生境斑块特征和未来城市土地利用变化情况设计了3种未来生境变化情景。利用连接概率指数(PC)和网络连接度变化率(dI)评价不同生境变化情景下生态保护区外潜在生境斑块的景观连接度重要性,判断保护优先顺序,并分析景观格局变化对不同迁移能力物种的影响。结果表明:生态保护区外的全部潜在生境斑块对维持生境整体景观连接度有最大2.15%的影响,单个潜在生境斑块对维持景观连接度有最大0.28%的影响。此外,景观格局及其变化对不同迁移能力物种的影响差异显著,因此需针对保护物种和城市生境特征设计保护方案,研究区需要优先保护大中型斑块和位于关键位置的小型斑块。为了满足对生物多样性保护的需求,建议在区分生境斑块保护优先顺序时考虑生境斑块对景观连接度的贡献和城市化扩展过程的压力。研究为城市生物多样性保护和生境管理提供了方法参考。  相似文献   

4.
Habitat loss, fragmentation and degradation are drivers of major declines in biodiversity and species extinctions. The actual causes of species population declines following habitat change are more difficult to discern and there is typically high covariation among the measures used to infer the causes of decline. The causes of decline may act directly on individual fitness and survival, or through disruption of population processes. We examined the relationships among configuration, extent and status of native vegetation and three commonly used indicators of individual body condition and chronic stress (haemoglobin level, haematocrit, residual body mass condition index) in 13 species of woodland‐dependent birds in south‐eastern Australia. We also examined two measures of changes to population processes (sex ratio and individual homozygosity) in ten species and alleic richness in five species. We found little support for relationships between site or landscape characteristics and individual or population response variables, notwithstanding that our simulations showed we had sufficient power to detect relatively small effects. We discuss possible causes of the absence of detectable habitat effects in this system and the implications for the usefulness of individual body condition and easily measured haematological indices as indicators of the response of avian populations to habitat change.  相似文献   

5.
基于土地覆盖和NDVI变化的拉萨河流域生境质量评估   总被引:3,自引:0,他引:3  
税燕萍  卢慧婷  王慧芳  严岩  吴钢 《生态学报》2018,38(24):8946-8954
气候变化和人类活动导致的土地覆盖和植被变化都会对生境质量产生影响。青藏高原是众多珍稀高原动植物的栖息地,具有重要的生物多样性维持价值。拉萨河流域是青藏高原经济最发达、人口最密集的核心地区,人类活动对生境质量带来的胁迫和压力持续增加。为揭示近些年来土地覆盖和植被变化对拉萨河流域生境质量的影响,选择生长季NDVI作为植被变化的指示因子,通过对不同植被类型各年份的生境适宜度进行修正,利用In VEST模型评估了拉萨河流域1990—2015年的生境质量时空变化。研究结果表明,1990—2015年拉萨河流域土地覆盖变化整体相对较小,其中人工表面和湿地面积增幅相对较大,分别为82.65%和32.40%;土地覆盖变化的转移方向主要为稀疏草地转化为草原和草甸、耕地转化为人工表面以及冰川/积雪转化为荒地。植被变化方面,1990—2000年,除流域中上游的裸岩、裸土地区和念青唐古拉山地区外,流域NDVI整体有较显著上升;而2000年以后略有下降。从生境质量的空间分布来看,高质量生境主要分布在流域下游、念青唐古拉山南侧河谷地区以及拉萨河源头等地区,低质量生境主要分布在拉萨市市辖区及周边、林周县县城及周边,以及流域中上游的荒地等地区。从时间变化上来看,1990—2000年,拉萨河流域整体生境质量指数从0.51上升到0.57; 2010年和2015年整体生境质量指数分别为0.56和0.55,较2000年略有下降。相比于土地覆盖变化,NDVI对生境质量变化的影响更为显著。  相似文献   

6.
Habitat loss and fragmentation are key processes causing biodiversity loss in human‐modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within‐habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape‐scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local‐scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human‐modified landscapes. We surveyed bird assemblages in eighty 300‐m‐long transects nested within twenty 1‐km2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within‐transects or within‐mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within‐transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local‐scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation.  相似文献   

7.
Habitat loss is the main driver of the current biodiversity crisis, a landscape-scale process that affects the survival of spatially-structured populations. Although it is well-established that species responses to habitat loss can be abrupt, the existence of a biodiversity threshold is still the cause of much controversy in the literature and would require that most species respond similarly to the loss of native vegetation. Here we test the existence of a biodiversity threshold, i.e. an abrupt decline in species richness, with habitat loss. We draw on a spatially-replicated dataset on Atlantic forest small mammals, consisting of 16 sampling sites divided between forests and matrix habitats in each of five 3600-ha landscapes (varying from 5% to 45% forest cover), and on an a priori classification of species into habitat requirement categories (forest specialists, habitat generalists and open-area specialists). Forest specialists declined abruptly below 30% of forest cover, and spillover to the matrix occurred only in more forested landscapes. Generalists responded positively to landscape heterogeneity, peaking at intermediary levels of forest cover. Open area specialists dominated the matrix and did not spillover to forests. As a result of these distinct responses, we observed a biodiversity threshold for the small mammal community below 30% forest cover, and a peak in species richness just above this threshold. Our results highlight that cross habitat spillover may be asymmetrical and contingent on landscape context, occurring mainly from forests to the matrix and only in more forested landscapes. Moreover, they indicate the potential for biodiversity thresholds in human-modified landscapes, and the importance of landscape heterogeneity to biodiversity. Since forest loss affected not only the conservation value of forest patches, but also the potential for biodiversity-mediated services in anthropogenic habitats, our work indicates the importance of proactive measures to avoid human-modified landscapes to cross this threshold.  相似文献   

8.
Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approaches, and illustrates the need for more in‐depth studies to assess the mechanisms that determine changes in stream biodiversity. Here we present results of the most comprehensive multi‐scale assessment of the biological condition of streams in the Amazon to date, examining functional responses of fish assemblages to land use. We sampled fish assemblages from two large human‐modified regions, and characterized stream conditions by physical habitat attributes and key landscape‐change variables, including density of road crossings (i.e. riverscape fragmentation), deforestation, and agricultural intensification. Fish species were functionally characterized using ecomorphological traits describing feeding, locomotion, and habitat preferences, and these traits were used to derive indices that quantitatively describe the functional structure of the assemblages. Using structural equation modeling, we disentangled multiple drivers operating at different spatial scales, identifying causal pathways that significantly affect stream condition and the structure of the fish assemblages. Deforestation at catchment and riparian network scales altered the channel morphology and the stream bottom structure, changing the functional identity of assemblages. Local deforestation reduced the functional evenness of assemblages (i.e. increased dominance of specific trait combinations) mediated by expansion of aquatic vegetation cover. Riverscape fragmentation reduced functional richness, evenness and divergence, suggesting a trend toward functional homogenization and a reduced range of ecological niches within assemblages following the loss of regional connectivity. These results underscore the often‐unrecognized importance of different land use changes, each of which can have marked effects on stream biodiversity. We draw on the relationships observed herein to suggest priorities for the improved management of stream systems in the multiple‐use landscapes that predominate in human‐modified tropical forests.  相似文献   

9.
Landscape modification and habitat fragmentation: a synthesis   总被引:21,自引:0,他引:21  
Landscape modification and habitat fragmentation are key drivers of global species loss. Their effects may be understood by focusing on: (1) individual species and the processes threatening them, and (2) human-perceived landscape patterns and their correlation with species and assemblages. Individual species may decline as a result of interacting exogenous and endogenous threats, including habitat loss, habitat degradation, habitat isolation, changes in the biology, behaviour, and interactions of species, as well as additional, stochastic threats. Human-perceived landscape patterns that are frequently correlated with species assemblages include the amount and structure of native vegetation, the prevalence of anthropogenic edges, the degree of landscape connectivity, and the structure and heterogeneity of modified areas. Extinction cascades are particularly likely to occur in landscapes with low native vegetation cover, low landscape connectivity, degraded native vegetation and intensive land use in modified areas, especially if keystone species or entire functional groups of species are lost. This review (1) demonstrates that species-oriented and pattern-oriented approaches to understanding the ecology of modified landscapes are highly complementary, (2) clarifies the links between a wide range of interconnected themes, and (3) provides clear and consistent terminology. Tangible research and management priorities are outlined that are likely to benefit the conservation of native species in modified landscapes around the world.  相似文献   

10.
Summary The landscape modification model proposed by McIntyre and Hobbs (1999) was used to assess the modification of Tasmania’s native vegetation and its potential implications for biodiversity conservation. The inclusion of new ‘substates’ in the model allowed the varying degrees of landscape variegation and fragmentation observed in Tasmania to be quantified. The mapped extent of Tasmania’s native vegetation is approximately 5.06 million ha or 74% of the land area. The extent of native vegetation varies across bioregions from a low of around 36% in the Tasmanian Northern Midlands bioregion to a high of 94% in the Tasmanian West bioregion. Overall, the Tasmanian landscape can be described as medium variegated as the State retains 76% cover of native vegetation, by area. Two of Tasmania’s nine bioregions are in an intact state, four are variegated, and three are fragmented. Seven of the State’s 48 catchments are in an intact state, 24 catchments are variegated, and 17 are fragmented. Tasmania was estimated to support 33 760 patches of native vegetation. Fewer than 3% of these patches exceed 50 ha in area. Small and medium patches occur predominantly on freehold land with grazing as a major land use, whereas large patches occur predominantly on crown land with conservation and production forestry as the major land uses. One feature of the State’s native vegetation is the large tract of native vegetation ecosystems in western Tasmania. Opportunities arise to sustain the resilience of these native ecosystems both by consolidating the formal protection of vegetation within catchments such as the Arthur and Pieman and by strengthening environmental management in adjacent areas. Bioregions and catchments where climate change may be of particular concern for biodiversity conservation and management include the Tasmanian Northern Midlands bioregion and Cam catchment in north‐western Tasmania. The maintenance and enhancement of patches of remnant vegetation in these areas will be challenging and appears likely to require strategic, multiscale and coordinated natural resource management over decades. Limiting the loss of native vegetation across the entire range of landscape states in Tasmania appears essential to mitigate the further decline of biodiversity.  相似文献   

11.
Loss, fragmentation and decreasing quality of habitats have been proposed as major threats to biodiversity world‐wide, but relatively little is known about biodiversity responses to multiple pressures, particularly at very large spatial scales. We evaluated the relative contributions of four landscape variables (habitat cover, diversity, fragmentation and productivity) in determining different components of avian diversity across Europe. We sampled breeding birds in multiple 1‐km2 landscapes, from high forest cover to intensive agricultural land, in eight countries during 2001?2002. We predicted that the total diversity would peak at intermediate levels of forest cover and fragmentation, and respond positively to increasing habitat diversity and productivity; forest and open‐habitat specialists would show threshold conditions along gradients of forest cover and fragmentation, and respond positively to increasing habitat diversity and productivity; resident species would be more strongly impacted by forest cover and fragmentation than migratory species; and generalists and urban species would show weak responses. Measures of total diversity did not peak at intermediate levels of forest cover or fragmentation. Rarefaction‐standardized species richness decreased marginally and linearly with increasing forest cover and increased non‐linearly with productivity, whereas all measures increased linearly with increasing fragmentation and landscape diversity. Forest and open‐habitat specialists responded approximately linearly to forest cover and also weakly to habitat diversity, fragmentation and productivity. Generalists and urban species responded weakly to the landscape variables, but some groups responded non‐linearly to productivity and marginally to habitat diversity. Resident species were not consistently more sensitive than migratory species to any of the landscape variables. These findings are relevant to landscapes with relatively long histories of human land‐use, and they highlight that habitat loss, fragmentation and habitat‐type diversity must all be considered in land‐use planning and landscape modeling of avian communities.  相似文献   

12.
In tropical landscapes, forest remnants have been reduced to narrow strips of vegetation along rivers and streams surrounded by agricultural land that affects biodiversity, depending on the habitat and landscape characteristics. To assess the effect of riparian forest loss on the diversity of Staphylininae predatory rove beetles, we considered two habitat conditions (river sites with riparian vegetation and sites with heterogeneous pastures) within two micro-basin types (with >70% and <40% forest cover) in a tropical montane cloud forest landscape, Mexico. Beetles were collected using baited pitfall traps during the rainy season of 2014. No differences were found between micro-basin types and, although species richness (0D) was similar between habitat conditions, when the diversity of common (1D) and dominant (2D) species was considered, sites with heterogeneous pastures were almost twice as diverse as those with riparian vegetation. All diversity measurements were greater in sites with heterogeneous pastures of either micro-basin type. Air temperature and canopy cover were the environmental variables that best explained the variation in beetle species composition. The greatest environmental differences related to species composition were detected between habitat conditions and were more evident in sites with heterogeneous pastures and low forest cover in the surroundings. The results suggest that replacing riparian vegetation with heterogeneous pastures, within micro-basins that lost between 30% and 60% of their forest cover, does not significantly reduce the diversity of predatory rove beetle but rather modifies the beetle composition. Effective formulation of management strategies to mitigate the impact of land use modification therefore requires an understanding of the interaction between vegetation remnants and landscape characteristics.  相似文献   

13.
千岛湖生态保护与建设对景观格局的影响研究   总被引:5,自引:0,他引:5  
生态保护和生态建设过程对景观格局产生影响并使之发生变化,这种变化又会影响景观的生态过程。应用3s技术和景观指数分析了39年(1964-2003年)内千岛湖库区土地利用和土地覆盖格局的变化。结果显示,斑块总数和景观破碎度基本保持不变,但是各斑块类型的斑块数量、面积和优势度变化非常显著。最优势斑块类型由荒山(占陆地面积的47.44%)演变为马尾松( Pinus massoniana)林(占陆地面积的52.8l%),研究区域内森林植被覆盖率增加。研究还发现景观多样性指数略微下降。景观多样性是对土地利用和覆盖类型丰富度和均匀度的概要度量,并不一定总是和景观功能呈正相关关系。上述变化归因于多项生态保护措施的实施使得自然演替得以实现。景观格局的优化使生态系统的生态功能得到提高,包括生境恢复、生物多样性增加、水土流失减少。森林植被恢复以后,马尾松林斑块的单一化趋势应在今后的生物多样性保护、生态规划和可持续发展中得到重视。  相似文献   

14.
Abstract Functional integrity is the intactness of soil and native vegetation patterns and the processes that maintain these patterns. In Australia's rangelands, the integrity of these patterns and processes have been modified by clearing, grazing and fire. Intuitively, biodiversity should be strongly related to functional integrity; that is, landscapes with high functional integrity should maintain biodiversity, and altered, less functional landscapes may lose some biodiversity, defined here as the variety and abundance of the plants, animals and microorganisms of concern. Simple indicators of biodiversity and functional integrity are needed that can be monitored at a range of scales, from fine to coarse. In the present paper, we use examples, primarily from published work on Australia's rangeland, to document that at finer patch and hillslope scales several indicators of landscape functional integrity have been identified. These indicators, based on the quantity and quality of vegetation patches and interpatch zones, are related to biodiversity. For example, a decrease in the cover and width (quantity) and condition (quality) of vegetation patches, and an increase in bare soil (quantity of interpatch) near cattle watering points in a paddock are significantly related to declines in plant and grasshopper diversity. These vegetation patch‐cover and bare‐soil indicators have been monitored traditionally by field‐based methods, but new high‐resolution, remote‐sensing imagery can be used in specific rangeland areas for this fine‐scale monitoring. At intermediate paddock and small watershed scales, indicators that can be derived from medium‐resolution remote‐sensing are also needed for efficient monitoring of rangeland condition (i.e. functional integrity) and biodiversity. For example, 30–100‐m‐pixel Landsat imagery has been used to assess the condition of rangelands along grazing gradients extending from watering‐points. The variety and abundance of key taxa have been related to these gradients (the Biograze project). At still larger region and catchment scales, indicators of rangeland functional integrity can also be monitored by coarse‐resolution remote‐sensing and related to biodiversity. For example, the extent and greenness (condition) of different regional landscapes have been monitored with 1‐km‐pixel satellite imagery. This regional information becomes more valuable when it indicates differences as a result of land management. Finally, we discuss potential future developments that could improve proposed indicators of landscape functional integrity and biodiversity, thereby improving our ability to monitor rangelands effectively.  相似文献   

15.
The loss of natural habitats is one of the main drivers of biodiversity decline. Anthropogenic land uses preserving biotic and abiotic conditions of the native ecosystem are more suitable to preserve the native biodiversity. In this study, we explored changes in species richness and composition in different land uses of the southern Atlantic forest, considering three independent factors: (1) canopy (presence–absence), (2) type of vegetation (native–exotic) and (3) livestock (presence–absence). We expected a gradient of response in the richness and composition of the native forest dung beetle community, from land uses preserving canopy and native vegetation to open land uses with exotic vegetation. Dung beetles were sampled in protected native forests and four land uses, using two potential food resources: human dung and carrion. The species richness and composition of each habitat, as well as differences in composition and the influence of factors over diversity, were then analyzed. As expected, our results showed that land uses preserving canopy and native vegetation maintain the dung beetle diversity of the native forest. Moreover, while the three factors analyzed influenced dung beetle diversity, canopy cover was the main driver of dung beetle diversity loss. The main conclusion of this study is that the conservation of canopy (either native or exotic) is determinant to preserve highly diverse dung beetle communities and subsequently, the ecological functions performed by this taxon. However, the ecophysiological mechanism behind the response of dung beetles to habitat disturbance is poorly understood.  相似文献   

16.
Agricultural intensification is best considered as the level of human appropriation of terrestrial net primary production. The global value is set to increase from 30%, increasing pressures on biodiversity. The pressures can be classified in terms of spatial scale, i.e. land cover, landscape management and crop management. Different lowland agricultural landscapes in Great Britain show differences among these pressures when habitat diversity and nutrient surplus are used as indicators. Eutrophication of plants was correlated to N surplus, and species richness of plants correlated with broad habitat diversity. Bird species diversity only correlated with habitat diversity when the diversity of different agricultural habitats was taken into account. The pressures of agricultural change may be reduced by minimizing loss of large habitats, minimizing permanent loss of agricultural land, maintaining habitat diversity in agricultural landscapes in order to provide ecosystem services, and minimizing pollution from nutrients and pesticides from the crops themselves. While these pressures could potentially be quantified using an internationally consistent set of indicators, their impacts would need to be assessed using a much larger number of locally applicable biodiversity indicators.  相似文献   

17.
潘耀  尹云鹤  侯文娟  韩皓爽 《生态学报》2022,42(19):7978-7988
位于青藏高原腹地的黄河源地区生态环境脆弱,面临生物多样性锐减、生态系统退化等问题,黄河源区生态系统保护及其高质量发展已成为国家的重点战略之一。土地利用与植被覆盖是影响生境质量的重要因素,定量化土地利用方式、强度及格局和植被覆盖格局对生态质量影响的研究越来越受到关注,但其对黄河源区生态质量的耦合效应尚不明确。基于2000年和2015年黄河源区土地利用类型及生长季归一化植被指数(NDVI),采用InVEST模型探究了不同时期黄河源区生境质量时空变化,并采用地理加权回归(GWR)模型揭示了生境质量对土地利用和植被覆盖变化的空间响应特征。结果表明,2000年与2015年土地利用类型变化主要为未利用土地向草地的转移。植被覆盖变化方面,源区生长季NDVI整体上升。从生境质量的空间分布来看,黄河源区生境质量总体呈现南高北低的空间格局,高值分布在南部及中部地区,低值分布在北部布青山、东北部高海拔区及黄河乡的黄河沿岸。相较于2000年,2015年黄河源区生境质量平均提高11.47%。草地面积和NDVI与生境质量均呈显著正相关关系,其中NDVI是提高黄河源区生境质量的重要驱动因子。研究结果突出了NDVI对提高黄河源区生境质量的主导作用,可为未来源区生态保护提供借鉴。  相似文献   

18.
Rapid habitat transformation calls for efficient methods to lead conservation efforts. For this reason, landscape analysis is becoming a major issue in biodiversity conservation. In Mexico, as in many parts of the world, management strategies are scarce so that biodiversity depletion processes continue. This is the case on the Izta-Popo volcanoes, which harbour over 10% of the total Mexican mammalian species within ca. 0.02% of the surface of Mexico. The present paper aims at assessing the effect of landscape dynamics on mammalian assemblages through a RS/GIS modelling approach. A database including all mammalian species recorded in the region from 1839 up to 1997 was compiled. The records, at genus level, were linked to land cover classes obtained from TM Landsat satellite images taken in 1986 and 1997. Land cover and habitat changes were analysed through a statistical analysis by crossing land cover maps of 1986 and 1997 which were transformed into habitat richness types. Major changes from high to medium and medium to low habitat richness classes prevail in the area. This reduces the resilience of the natural landscapes and increases the threats for most mammalian species. From a landscape ecological perspective, the present paper demonstrates the importance of the area as a unique mosaic of mammalian assemblages.  相似文献   

19.
Overgrazing, land use abandonment and increasing recreational activities have altered the vegetation of high-montane and subalpine grassland of the Caucasus. The failure of previous restoration efforts with unsuitable and exotic plant species indicates the need for information on the present vegetation and in which way it might change. Within the Greater Caucasus, we have described and quantified the mountain grassland which develops under characteristic overgrazed and eroded site conditions. Further, we have proposed potential native plant species for revegetation to restore and conserve valuable mountain grassland habitats. We used non-metric dimensional scaling ordination and cluster comparison of functional plant groups to describe a gradient of grassland vegetation cover. For our study region, we identified four major vegetation types with increasing occurrence of ruderal pasture weeds and tall herb vegetation on abandoned hay meadows within the subalpine zone. Within high-montane grassland a decline of plant diversity can be observed on sites of reduced vegetation cover. Due to a low potential of the grassland ecosystem to balance further vegetation cover damage, the long-term loss of diverse habitats can be expected. We conclude with management recommendations to prevent erosion and habitat loss of precious mountain grasslands.  相似文献   

20.
《Ecological Indicators》2008,8(5):754-766
Monitoring patterns of fauna diversity across the landscape, both spatially and temporally, presents special challenges due to the dynamic nature of populations and complex interactions with the local and regional environment. One area where progress is being made is the development of relationships between regional biodiversity with indirect indicators or surrogates, such as vegetative production. In this paper we discuss implementation of a dynamic habitat index, originally developed in Australia, to Canadian conditions. The index, based on the fraction of photosynthetically active radiation (fPAR) absorbed by vegetation, a variable which is analogous to green vegetation cover, is derived solely from satellite data. The index utilizes time series of satellite observations of greenness to derive three indicators of the underlying vegetation dynamics; the cumulative annual greenness, the minimum level of perennial cover, and the degree of vegetation seasonality. We apply the index across Canada and compare the three components by ecozones, demonstrating that Canada's terrestrial environment can effectively be clustered into five major dynamic habitat regimes. These range from those with low cumulative greenness and highly seasonal variation in cover, to regimes which have high canopy light absorbance with limited seasonality and continuous annual green cover. By comparing data from multiple years, our analysis indicates that a number of these ecozones have experienced changes in their composition over the past 6 years. We believe this methodology can provide an initial stratification of large areas for biodiversity monitoring and can be used to focus finer scale approaches to specific regions of interest or monitor regions too remote for comprehensive field surveys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号