首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
The effect of dissolved oxygen partial pressure on the accumulation of astaxanthin in the green alga Haematococcus lacustris ( Gir.) Rostaf (UTEX16) was studied in N-limited continuous chemostat cultures. The steady-state astaxanthin content measured against culture volume, cell number, and biomass dry weigh of Haematococcus cultures was proportional to the dissolved O2 partial pressure in the culture medium, over the range of 0–50% O2 The steady-state biomass dry weight concentrations remained at between 0.52 and 0.57 g. L-1 over the range of dissolved O2 partial pressure studied. Steady-state cell densities at dissolved O2 partial pressures above the air saturation level (1.13–1.58 × 105 cells.mL-1) were about half of that measured at lower dissolved O2 partial pressures (2.42–2.63 × 105 cells.mL-1). Both biflagellated zoospores and nonmotile aplanospores were found at steady state. The fraction of nonmotile cells was higher at dissolved O2 partial pressures above the air saturation level (94.44–98.01%) than at dissolved O2 partial pressure below the air level (79.64–86.12 and 91.75% ).  相似文献   

2.
Abstract The formate oxidizing capacity of Wolinella recta ATCC 33238 was studied in relation to growth under anaerobic and microaerobic conditions. Three distinct activities could be recognized: (a) cyanide-insensitive H2O2-producing oxidation of formate; (b) peroxidation of formate (H2O2-consuming); (c) oxidation of formate via an electron transport chain with oxygen as the electron acceptor. The contribution of these different formate oxidizing components during the growth of W. recta was dependent on the extent of aeration. It is suggested that due to the relative increase in overall H2O2 formation at higher oxygen tensions growth of W. recta appears possible only under anaerobic and microaerobic conditions.  相似文献   

3.
Abstract The products of anaerobic and micro-aerobic (0.8% O2) metabolism of the sapropelic ciliate Trimyema compressum strain N were studied. Under anaerobic conditions ethanol was formed in large amounts representing 44% of the total carbon excreted. Acetate, lactate, formate, CO2 and H2 were minor products, while succinate was formed in hardly detectable amounts. Under micro-aerobic conditions O2 was consumed, CO2 and formate were produced as major end products and no H2, ethanol and succinate were formed.  相似文献   

4.
Abstract: The aerobic chemotrophic sulfur bacterium Thiobacillus thioparus T5 and the anaerobic phototrophic sulfur bacterium Thiocapsa roseopersicina M1 were co-cultured in continuously illuminated chemostats at a dilution rate of 0.05 h−1. Sulfide was the only externally supplied electron donor, and oxygen and carbon dioxide served as electron acceptor and carbon source, respectively. Steady states were obtained with oxygen supplies ranging from non-limiting amounts (1.6 mol O2 per mol sulfide, resulting in sulfide limitation) to severe limitation (0.65 mol O2 per mol sulfide). Under sulfide limitation Thiocapsa was competitively excluded by Thiobacillus and washed out. Oxygen/sulfide ratios between 0.65 and 1.6 resulted in stable coexistence. It could be deduced that virtually all sulfide was oxidized by Thiobacillus . The present experiments showed that Thiocapsa is able to grow phototrophically on the partially oxidized products of Thiobacillus . In pure Thiobacillus cultures in steady state extracellular zerovalent sulfur accumulated, in contrast to mixed cultures. This suggests that a soluble form of sulfur at the oxidation state of elemental sulfur is formed by Thiobacillus as intermediate. As a result, under oxygen limitation colorless sulfur bacteria and purple sulfur bacteria do not competitively exclude each other but can coexist. It was shown that its ability to use partially oxidized sulfur compounds, formed under oxygen limiting conditions by Thiobacillus , helps explain the bloom formation of Thiocapsa in marine microbial mats.  相似文献   

5.
Abstract Two denitrifying bacteria ( Pseudomonas chlororaphis and P. aureofaciens ) and a plant (barley, Hordeum vulgare ) were used to study the effect of O2 concentration on denitrification and NO3 uptake by roots under well-defined aeration conditions. Bacterial cells in the early stationary phase were kept in a chemostat vessel with vigorous stirring and thus a uniform O2 concentration in the solution. Both Pseudomonads lacked N2O reductase and so total denitrification could be directly measured as N2O production.
Denitrification decreased to 6–13% of the anaerobic rate at 0.01% O2 saturation (0.14 μM O2) and was totally inhibited at 0.04% O2 saturation (0.56 μM O2). In this well-mixed system denitrification was 10-times more oxygen sensitive than stated in earlier reports. Uptake of nitrate by plants was measured in the same system under light. The NO3 uptake rate decreased gradually from a maximum in 21% O2-saturated medium (air saturated) to zero at 1.6% O2 saturation (22.4 μM O2). Owing to the very different non-overlapping oxygen requirements of the two processes, direct competition for nitrate between plant roots and denitrifying bacteria cannot occur.  相似文献   

6.
Abstract The in situ method for determination of reduction levels of cytochromes b and c pools during steady-state growth (Pronk et al., Anal. Biochem. 214, 149–155, 1993) was applied to chemostat cultures of the wild-type, a cytochrome aa3 single mutant and a cytochrome aa3/d double mutant of Azorhizobium caulinodans . For growth with NH4+ as the N source, the results indicate that (i) the aa3 mutant strains growing at a dissolved O2 tension of 0.5% possess an active alternative cytochrome c oxidase, which is hardly present during fully aerobic growth, and assuming that (i) also pertains to the wild-type, (ii) the wild-type uses cytochrome aa3 under fully aerobic conditions. For growth with N2 as the N source, it was found that the aa3 mutant strains growing at dissolved O2 tensions ranging from 0.5 to 3.0% also contain an active alternative cytochrome c oxidase.  相似文献   

7.
Kugrens  P.  Aguiar  R.  Clay  B.L.  & Lee  R.E. 《Journal of phycology》2000,36(S3):39-39
Given their rapid growth and nutrient assimilation rates, Porphyra spp. are good candidates for bioremediation. The production potential of two northeast U.S. Porphyra species currently in culture ( P. purpurea and P. umbilicalis ) was evaluated by measuring rates of photosynthesis (as O2 evolution) of samples grown at 20° C. Gametophytes of P. umbilicalis photosynthesized at rates that were 80% higher than those of P. purpurea over 5–20° C at both sub-saturating and saturating irradiances (37 and 289 μmol photons m−2 s−1). Porphyra umbilicalis was both more efficient at low irradiances (higher alpha) and had a higher Pmax than did P. purpurea (23.0 vs. 15.6 μmol O2 g−1 DW min−1), suggesting that P. umbilicalis is a better choice for mass culture where self-shading may be severe. The photosynthesis-irradiance relationship for the Conchocelis stage of P. purpurea was also examined. Tufts of filaments, grown at 10, 15, and 20° C, were assayed at growth temperatures at irradiances ranging from 0–315 μmol photons m−2 s−1. Tufts were slightly more productive at 15° than at 10° C, but only ca. 4–6% as productive as gametophytes. Maximum rates of net photosynthesis were reduced by 66–74% in tufts grown at 20° C (only about 2% of gametophytes). The Conchocelis stage, however, need not limit mariculture operations; once Conchocelis cultures are established, they can be maintained over the long-term as ready sources of spores for net seeding.  相似文献   

8.
Highbush blueberry plants ( Vaccinium corymbosum L. cv. Bluecrop) growing in containers were flooded in the laboratory for various durations to determine the effect of flooding on carbon assimilation, photosynthetic response to varying CO2 and O2 concentrations and apparent quantum yield as measured in an open flow gas analysis system. Hydraulic conductivity of the root was also measured using a pressure chamber. Root conductivity was lower and the effect of increasing CO2 levels on carbon assimilation less for flooded than unflooded plants after short-(i-2 days), intermediate-(10–14 days) and long-term (35–40 days) flooding. A reduction in O2 levels surrounding the leaves from 21 to 2% for unflooded plants increased carbon assimilation by 33% and carboxylation efficiency from 0.012 to 0.021 mol CO2 fixed (mol CO2)−1. Carboxylation efficiency of flooded plants, however, was unaffected by a decrease in percentage O2, averaging 0.005 mol CO2 fixed (mol CO2)−1. Apparent quantum yield decreased from 2.2 × 10−1 mol of CO2 fixed (mol light)−1 for unflooded plants to 2.0 × 10−3 and 9.0 × 10−4 for intermediate- and long-term flooding durations, respectively. Shortterm flooding reduced carbon assimilation via a decrease in stomatal conductance, while longer flooding durations also decreased the carboxylation efficiency of the leaf.  相似文献   

9.
A simple gas chromatograph with a katharometer detector is described to determine O2, N2, methane and CO2 in gas samples of 0·01–2·0 ml. The apparatus is inexpensive, and can be modified to determine other gases. The sensitivity to oxygen is 3 × 10−6 g. The use of the instrument is illustrated by a study of the growth kinetics of Methylococcus capsulatus grown on methane in shake flask experiments. The ratio of O2 uptake to methane uptake is much lower in the stationary phase than in the growth phase of the culture.  相似文献   

10.
Generation of O2 and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid – a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2 production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found.  相似文献   

11.
Abstract The production of nitrogen-containing gases by denitrification in three organisms was examined using membrane inlet mass spectrometry. The effects of O2 (during both growth and maintenance) and of pH, nitrate concentration and carbon source were tested in non-proliferating cell suspensions. Two strains of Pseudomonas aeruginosa were capable of co-respiration of NO3 and O2 and, under controlled O2 supply, gave oscillatory denitrification. Variations in culture and assay conditions affected both the rate of denitrification and the ratio of end products (N2O:N2). Higher rates were seen following anaerobic growth. Optimum values of pH and nitrate concentration for denitrification are given. Generally, the optimum pH was 7.0–7.5, approximately that of the growth medium. Optimum nitrate concentration was generally 20 mM.  相似文献   

12.
Aquatic and aerial respiration of the amphibious fishes Lipophrys pholis and Periophthalmus barbarus were examined using a newly designed flow-through respirometer system. The system allowed long-term measurements of oxygen consumption and carbon dioxide release during periods of aquatic and aerial respiration. The M o 2 of L. pholis , measured at 15° C, was 2·1 μmol O2 g–1 h–1 during aquatic and 1·99 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the M co2 were 1.67 and 1.59 μmol O2 g–1 h–1 respectively, giving an aquatic respiratory exchange ratio (RER) of 0·80 and an aerial RER of 0·79. The M o2 of P. barbarus , measured at 28°C, was 4·05 μmol O2 g–1 h–1 during aquatic and 3·44 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the Mco2 were 3·29 μmol CO2 g–1 h–1 and 2·63 μmol CO2 g–1 h–1 respectively, giving an aquatic RER of 0·81 and an aerial RER of 0·77. While exposed to air for at least 10 h, both species showed no decrease in metabolic rate or carbon dioxide release. The RER of these fishes equalled their respiratory quotient. After re-immersion an increased oxygen consumption, due to the payment of an oxygen debt, could not be detected.  相似文献   

13.
Abstract The midpoint redox potentials (E'0) of the cytochromes of Pseudomonas carboxydovorans have been studied by means of coupled spectrum deconvolution and potentiometric analysis. Membranes of cells grown on different substrates (CO; H2+ CO2; or pyruvate) contained cytochromes with similar absorption peaks and redox potentials. The cytochromes of the CO-sensitive main electron pathway of the respiratory chain revealed redox potentials in the same range as mitochondrial cytochromes (cytochrome b -555, about −20 mV; cytochrome c and cytochrome a , about +220 mV). For the cytochromes of the CO-insensitive alternative electron pathway, which allows uninhibited growth and respiration in the presence of high concentrations of CO, redox potentials of approx. +50 mV (cytochrome b -558) and −11 to −215 mV (cytochrome b -561) were determined. Cytochrome [ib-561], earlier proposed as the alternative terminal oxidase o in this organism, was shown to possess the lowest half reduction potential of all the cytochromes present in the cells. Measurements of the apparent K m value for oxygen revealed a low affinity of cytochrome a ( K m/ 5 υ M O2) and a very high affinity of the CO-insensitive oxidase ( K m < 0.5 μ M O2). The high affinity to oxygen might be responsible for the CO-insensitivity of this unusual cytochrome o .  相似文献   

14.
Clostridium pasteurianum fermented glucose to acetate, butyrate, CO2 and H2. In batch cultures the fermentation pattern was only slightly affected by culture pH over the range 8·0 to 5·5. The acetate/butyrate ratio was always higher than or equal to one. Between 2·14 and 2·33 mol H2 was produced per mol glucose fermented. At unregulated pH, more butanol and less butyrate was formed. In a carbon-limited chemostat, the steady-state acetate/butyrate ratio was always lower than one. H2 production was approximately 1·70 mol per mol glucose consumed. Substantial amounts of extracellular protein were formed. With decreasing pH, acetate and formate production decreased, while H2 production was highest at pH 6.0. With increasing dilution rate ( D ), the product spectrum hardly changed, but more biomass was formed. Y glucosemax and Y ATPmax were 55·97 and 31·48 g dry weight per mol glucose or ATP respectively. With increasing glucose input the formation of fatty acids and H2 slightly decreased.
Continuous cultures fermented mannitol to acetate, butyrate, butanol, CO2 and H2. With acetate as co-substrate, butanol production and molar growth yields, Y mannitol and Y ATP, markedly decreased, while the butyrate and H2 production increased. The latter reached a value of 2·21 mol H2 per mol mannitol consumed.  相似文献   

15.
Hydrogen production by the rumen protozoon, Dasytricha ruminantium was reversibly inhibited at O2 tensions < 2.8 μmol/1. At higher O2 concentrations irreversible inactivation of the hydrogenase system was observed. In the rumen, H2 generation is likely to be determined by O2 concentration since the physiological levels of O2 in the rumen are in the range 0–1.5 μmol/1.  相似文献   

16.
Purified, right side-out plasmalemma vesicles were isolated from 7-day-old roots of dark-grown wheat ( Triticum aestivum L. cv. Drabant) by aqueous polymer two-phase partitioning. The oxygen consumption by these vesicles at pH 6.5 in the presence of 1 m M NADH [12–29 nmol (mg protein)−1min−1] was 66% inhibited by 1 m M KCN and ca 40% by 1 m M EDTA. It was unaffected by rotenone, antimycin A, carbonyl cyanide trifluoromethoxyphenylhydrazone (FCCP), mersalyl, chlorotetracycline + Ca2+, and EGTA. Salicylhydroxamic acid (SHAM) and its analogue, m -chlorobenzhydroxamic acid, stimulated the rate of oxygen consumption 10–20 fold in the presence of 1 m M NAD(P)H with an apparent Km (SHAM) of ca 40 μ M (with NADH). The dependence of O2 consumption on NADH concentration in the presence of SHAM (2 m M ) was sigmoidal, possibly due to endogenous catalase activity, and half-maximal rate was obtained at 1.5 m M . In the absence of SHAM the rate increased with increasing acidity and no pH optimum was detectable between pH 4.5 and 8.5. In the presence of SHAM an optimum was observed at pH 6.5 and 0.8 mol of H2O2 was produced for every 1 mol O2 consumed. Endogenous catalase converted this H2O2 to O2 and after complete conversion the stoichiometry was 2 mol NADH consumed for every mol O3. SHAM was not consumed in the reaction. The possible involvement of a cytochrome P-450/420 system is discussed.  相似文献   

17.
We present, for the first time, the oxygen response kinetics of mitochondrial respiration measured in intact leaves (sunflower and aspen). Low O2 concentrations in N2 (9–1500 ppm) were preset in a flow-through gas exchange measurement system, and the decrease in O2 concentration and the increase in CO2 concentration as result of leaf respiration were measured by a zirconium cell O2 analyser and infrared-absorption CO2 analyser, respectively. The low O2 concentrations little influenced the rate of CO2 evolution during the 60-s exposure. The initial slope of the O2 uptake curve on the dissolved O2 concentration basis was relatively constant in leaves of a single species, 1.5 mm s−1 in sunflower and 1.8 mm s−1 in aspen. The apparent K 0.5(O2) values ranged from 0.33 to 0.67 μ M in sunflower and from 0.33 to 1.1 μ M in aspen, mainly because of the variation of the maximum rate, V max (leaf temperature 22°C). The initial slope of the O2 response of respiration characterizes the catalytic efficiency of terminal oxidases, an important parameter of the respiratory machinery in leaves. The plateau of the response characterizes the activity of the mitochondrial electron transport chain and is subject to regulations in accordance with the necessity for ATP production. The relatively low oxygen conductivity of terminal oxidases means that in leaves, less than 10% of the photosynthetic oxygen can be reassimilated by mitochondria.  相似文献   

18.
Individual variation in the rate of oxygen consumption by zebrafish embryos   总被引:3,自引:0,他引:3  
A sensitive microsensor‐based method was used to measure oxygen consumption of individual zebrafish Danio rerio embryos at 6 h intervals from 24 to 75 h post‐fertilization. An increase in oxygen consumption rates from 4·54 to 8·29 nmol O2 h−1 was found during this period. At the individual level the differences in oxygen consumption rates caused the total oxygen consumption from 24 to 75 h post‐fertilization to vary between 0·261 and 0·462 μmol O2 per individual with a mean of 0·379 μmol O2 per individual. A separate carbon mass balance study corroborated the mean total oxygen consumption obtained by yielding a respiratory quotient of 0·80 for this period. These results suggest that there is significant intraspecific variation in the metabolic rate of developing zebrafish embryos, which may influence other early life‐history traits such as growth and starvation resistance.  相似文献   

19.
Oxygen consumption of Oreochromis niloticus at different stages of development was studied in relation to salinity, temperature and time of day, using a Warburg apparatus. The oxygen consumption of newly hatched (0–14 h) larvae was 3.40 μl O2 larva−1 h−1, of older yolk sac larvae 10.09 μl O2 larva−1 h−1, and of one-month-old fry 32.99 μl O2 larva−1 h−1. The QO2 values showed a decrease with development and growth, ranging from 21.2–26.0 μl O2 mg−1 h−1 in newly hatched larvae to 2.97 μl mg−1 h−1 in one-month-old fry. Changes in oxygen consumption occurred with salinity, the highest being at 17%o. Active larvae (12-24 mm T.L.) showed a doubling of consumption with a 10° C rise in temperature, and their Q10 factor increased from 2.25 to 3.43 with increasing size. Day-old yolk-sac larvae, late yolk-sac larvae (5 days old) and fry of 12 14 mm length all showed a depression in oxygen consumption at midnight followed by a dawn rise.  相似文献   

20.
Dark O2 consumption by the green alga Selenastrum minutum was sensitive to inhibition by the cytochrome pathway respiration inhibitor cyanide in the absence of an alternative oxidase inhibitor, consistent with previous work that suggested that this alga lacks alternative oxidase capacity. In contrast, addition of low concentrations of the cytochrome pathway inhibitor azide (50–750 μ M ) resulted in a stimulation of dark O2 consumption, while higher concentrations of azide (1–2 m M ) partially inhibited O2 consumption. Measurements of changes in cellular levels of pyruvate, malate and pyridine nucleotides upon cyanide addition were consistent with the absence of alternative oxidase capacity, and suggested that cyanide inhibition of O2 consumption was not due to nonspecific effects of cyanide. Addition of salicylhydroxamic acid (SHAM) also resulted in an increase in the rate of O2 consumption. Both azide- and SHAM-stimulated O2 consumption were sensitive to inhibition by 50 m M ascorbate or by cyanide. However, the ubiquinone analogs chloroquine and quinacrine specifically inhibited azide-stimulated O2 consumption, with only minor effects on SHAM-stimulated O2 consumption. These results suggest that azide-stimulated O2 consumption was not mediated by the previously characterized SHAM-stimulated oxidase, and are consistent with the possibility that azide-stimulated O2 consumption is mediated by a plasma membrane redox system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号