首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
p56lck, a lymphocyte-specific tyrosine protein kinase, binds to the cytoplasmic tails of the T-cell surface molecules CD4 and CD8. Cross-linking of CD4 expressed on the surface of murine thymocytes, splenocytes, and CD4+ T-cell lines induced tyrosine phosphorylation of p56lck dramatically. Cross-linking of CD8 stimulated tyrosine phosphorylation of p56lck strongly in murine L3 and GA4 cells, slightly in splenocytes, but not detectably in thymocytes. Differing effects of cross-linking on in vitro tyrosine kinase activity of p56lck were observed. An increase in the in vitro kinase activity of p56lck, when assayed with [Val5]-angiotensin II as an exogenous substrate, was found to accompany cross-linking of CD4 in three cell lines. No stimulation of the in vitro kinase activity, however, was observed after cross-linking of CD8 in L3 cells. The phosphorylation of p56lck at Tyr-394, the autophosphorylation site, was stimulated by cross-linking in all cell lines examined. Tyr-394 was the predominant site of increased tyrosine phosphorylation in two leukemic cell lines. In the other two cell lines, the phosphorylation of both Tyr-394 and an inhibitory site, Tyr-505, was found to increase. In contrast to cross-linking with antibodies, no striking increase in the tyrosine phosphorylation of p56lck was stimulated by antigenic stimulation. Therefore, the effect of antibody-induced aggregation of CD4 and CD8 on the tyrosine phosphorylation of p56lck differs, at least quantitatively, from what occurs during antigen-induced T-cell activation.  相似文献   

2.
Accumulating data suggest that the CD4 T-cell surface antigen transduces an independent intracellular signal during antigen-mediated T-cell activation. CD4 is physically associated with the internal membrane tyrosine protein kinase p56lck and can mediate, after antibody-mediated cross-linking, the rapid enzymatic activation of Lck, implying that CD4 signalling may involve changes in tyrosine protein phosphorylation. In this report, we describe that cross-linking of CD4 results in a series of rapid changes in intracellular tyrosine protein phosphorylation. The most prominent CD4-induced tyrosine phosphorylation change involved p56lck, which became extensively phosphorylated on the carboxy-terminal tyrosine residue 505 and, to a lesser extent, lymphocytes can transduce an intracellular signal resulting in tyrosine protein phosphorylation and strongly suggest that this property of CD4 is mediated through p56lck.  相似文献   

3.
To understand the mechanism(s) by which p56lck participates in T-cell receptor (TCR) signalling, we have examined the effects of mutations in known regulatory domains of p56lck on the ability of F505 p56lck to enhance the responsiveness of an antigen-specific murine T-cell hybridoma. A mutation of the amino-terminal site of myristylation (glycine 2), which prevents stable association of p56lck with the plasma membrane, completely abolished the ability of F505 p56lck to enhance TCR-induced tyrosine protein phosphorylation. Alteration of the major site of in vitro autophosphorylation, tyrosine 394, to phenylalanine diminished the enhancement of TCR-induced tyrosine protein phosphorylation by F505 p56lck. Such a finding is consistent with the previous demonstration that this site is required for full activation of p56lck by mutation of tyrosine 505. Strikingly, deletion of the noncatalytic Src homology domain 2, but not of the Src homology domain 3, markedly reduced the improvement of TCR-induced tyrosine protein phosphorylation by F505 Lck. Additional studies revealed that all the mutations tested, including deletion of the Src homology 3 region, abrogated the enhancement of antigen-triggered interleukin-2 production by F505 p56lck, thus implying more stringent requirements for augmentation of antigen responsiveness by F505 Lck. Finally, it was also observed that expression of F505 p56lck greatly increased TCR-induced tyrosine phosphorylation of phospholipase C-gamma 1, raising the possibility that phospholipase C-gamma 1 may be a substrate for p56lck in T lymphocytes. Our results indicate that p56lck regulates T-cell antigen receptor signalling through a complex process requiring multiple distinct structural domains of the protein.  相似文献   

4.
p56lck, a member of the src family of cytoplasmic tyrosine kinases, is expressed predominantly in T cells where it associates with the T-cell surface molecules CD4 and CD8. Mutants of CD4 and CD8 that have lost the ability to associate with p56lck no longer enhance antigen-induced T-cell activation. This suggests that p56lck plays an important role during T-cell activation. In an effort to understand the function of p56lck in T cells, a constitutively activated lck gene (F505lck) was introduced into T-helper hybridoma cell lines by retroviral infection. In four T-cell lines we examined, the activated lck protein stimulated interleukin-2 (IL-2) production, a hallmark of T-cell activation, in the absence of antigenic stimulation. In addition, a marked increase in antigen-independent IL-2 production was apparent when T cells infected with a temperature-sensitive F505lck were shifted to the permissive temperature. Only one cell line expressing F505lck exhibited increased sensitivity to antigenic stimulation. The SH3 domain of p56lck was dispensable for the induction of antigen-independent IL-2 production. In contrast, deletion of the majority of the SH2 domain of p56F505lck reduced its ability to induce spontaneous IL-2 production markedly. Activated p60c-src also induced antigen-independent IL-2 production, whereas two other tyrosine kinases, v-abl and the platelet-derived growth factor receptor, did not. Tyrosine phosphorylation of a 70-kDa cellular protein was observed after cross-linking of CD4 in T cells expressing F505lck but not in cells expressing F527src.  相似文献   

5.
The catalytic activity of p56lck is repressed by phosphorylation of a conserved carboxy-terminal tyrosine residue (tyrosine 505). Accumulating data show that this phosphorylation is mediated by the tyrosine protein kinase p50csk and that it is reversed by the transmembrane tyrosine protein phosphatase CD45. Recent studies have indicated that dephosphorylation of tyrosine 505 in resting T cells is necessary for the initiation of antigen-induced T-cell activation. To better understand this phenomenon, we have characterized the factors regulating tyrosine 505 phosphorylation in an antigen-specific T-cell line (BI-141). As is the case for other T-cell lines, Lck molecules from unstimulated BI-141 cells exhibited a pronounced dephosphorylation of the inhibitory carboxyl-terminal tyrosine. This state could be corrected by incubation of cells with the tyrosine protein phosphatase inhibitor pervanadate, suggesting that it reflected the unrestricted action of tyrosine protein phosphatases. In structure-function analyses, mutation of the site of Lck myristylation (glycine 2) partially restored phosphorylation at tyrosine 505 in BI-141 cells. Since the myristylation-defective mutant also failed to stably associate with cellular membranes, this effect was most probably the consequence of removal of p56lck from the vicinity of membrane phosphatases like CD45. Deletion of the unique domain of Lck, or its replacement by the equivalent sequence from p59fyn, also increased the extent of tyrosine 505 phosphorylation in vivo. This effect was unrelated to changes in Lck membrane association and therefore was potentially related to defects in crucial protein-protein interactions at the membrane. In contrast, deletion of the SH3 or SH2 domain, or mutation of the phosphotransfer motif (lysine 273) or the site of autophosphorylation (tyrosine 394), had no impact on phosphate occupancy at tyrosine 505. In combination, these results indicated that the hypophosphorylation of the inhibitory tyrosine of p56(lck) in T lymphocytes is likely the result of the predominant action of tyrosine protein phosphatases. Moreover, they showed that both the amino-terminal myristylation signal and the unique domain of p56(lck) play critical roles in this process.  相似文献   

6.
Mutation of the major site of in vivo tyrosine phosphorylation of p56lck (tyrosine 505) to a phenylalanine constitutively enhances the p56lck-associated tyrosine-specific protein kinase activity. The mutant polypeptide is extensively phosphorylated in vivo at the site of in vitro Lck autophosphorylation (tyrosine 394) and is capable of oncogenic transformation of rodent fibroblasts. These observations have suggested that phosphorylation at Tyr-505 down regulates the tyrosine protein kinase activity of p56lck. Herein we have attempted to examine whether other posttranslational modifications may be involved in regulation of the enzymatic function of p56lck. The results indicated that activation of p56lck by mutation of Tyr-505 was prevented by a tyrosine-to-phenylalanine substitution at position 394. Furthermore, activation of p56lck by mutation of the carboxy-terminal tyrosine residue was rendered less efficient by substituting an alanine residue for the amino-terminal glycine. This second mutation prevented p56lck myristylation and stable membrane association and was associated with decreased in vivo phosphorylation at Tyr-394. Taken together, these findings imply that lack of phosphorylation at Tyr-505 may be insufficient for enhancement of the p56lck-associated tyrosine protein kinase activity. Our data suggest that activation of p56lck may be dependent on phosphorylation at Tyr-394 and that this process may be facilitated by myristylation, membrane association, or both.  相似文献   

7.
The CD4 receptor subserves both adhesion and signal transduction functions on CD4+ T-lymphocytes. CD4 is physically associated with the src-related protein tyrosine kinase p56lck. Cell surface engagement of CD4 leads to enzymatic activation of the associated p56lck and the phosphorylation of T-cell proteins on tyrosine residues. We have identified a 72-74kD protein phosphorylated on tyrosine residues following activation of CD4-associated p56lck as the serine-threonine kinase Raf-1. The demonstration that Raf-1 is a substrate for the CD4/p56lck receptor system in normal cells suggests that receptor and nonreceptor classes of protein tyrosine kinases can independently engage functionally overlapping signal transduction pathways.  相似文献   

8.
The catalytic function of Src-related tyrosine protein kinases is repressed by phosphorylation of a conserved carboxy-terminal tyrosine residue. Recent studies suggest that this inhibitory event is not the result of autophosphorylation but that it is mediated by another cytoplasmic tyrosine protein kinase, termed p50csk. In this report, we have evaluated the processes regulating the extent of phosphorylation of the inhibitory carboxy-terminal tyrosine residue of p56lck, a lymphocyte-specific member of the Src family. By analyzing kinase-defective variants of p56lck expressed in mouse NIH 3T3 cells, we have found that the noncatalytic Src homology 2 (SH2) domain, but not the SH3 sequence or the sites of Lck myristylation and autophosphorylation, is necessary for stable phosphorylation at the carboxy-terminal tyrosine 505. Further studies in which Lck and Csk were coexpressed in S. cerevisiae indicated that the absence of the SH2 domain did not affect the ability of Csk to phosphorylate p56lck at tyrosine 505. However, we observed that incubation of cells with the tyrosine phosphatase inhibitor pervanadate restored the tyrosine 505 phosphorylation of Lck polypeptides devoid of the SH2 motif. Additionally, the presence of the SH2 sequence protected tyrosine 505 from in vitro dephosphorylation by the hemopoietic tyrosine protein phosphatase CD45. Taken together, these findings raised the possibility that the SH2 motif contributes to the physiological suppression of the catalytic function of p56lck at least in part through its ability to stabilize phosphorylation at the inhibitory site.  相似文献   

9.
A newly isolated T-cell line (CB1) derived from a T-acute lymphoblastic leukaemia (T-ALL) patient contained cells (40% of total) which did not express the CD45 phosphotyrosine phosphatase. The cells were sorted into CD45- and CD45+ populations and shown to be clonal in origin. T-cell receptor (TCR) cross-linking or coligation of the TCR with its CD4/CD8 co-receptors induced tyrosine phosphorylation and calcium signals in CD45+ but not in CD45- cells. Unexpectedly, whole cell p56lck and p59fyn tyrosine kinase activities were not reduced in CD45- compared to CD45+ cells. A novel technique was therefore developed to isolated specific pools of aggregated receptors expressed at the cell surface, together with their associated tyrosine kinases. Using this technique it was shown that cell surface CD4-p56lck kinase activity was 78% lower in CD45- than in CD45+ cells. Phosphorylation of TCR zeta- and gamma-chains occurred in TCR immunocomplexes from CD45+ but not CD45- cells, despite comparable levels of p59fyn and TCR proteins. Furthermore, TCR-associated tyrosine kinase activity towards an exogenous substrate was 84% lower in CD45- than in CD45+ cells. Addition of recombinant p59fyn to TCR immunocomplexes isolated from CD45-cells restored the phosphorylation of the TCR zeta- and gamma-chains. Our results demonstrate that CD45 selectively regulates the pools of p59fyn and p56lck kinases which are associated with the TCR and CD4 at the cell surface. Activation by CD45 of these receptor-associated kinase pools correlates with the ability of the TCR and its coreceptors to couple to intracellular signalling pathways.  相似文献   

10.
Protein tyrosine kinases participate in the transduction and modulation of signals that regulate proliferation and differentiation of cells. Excessive or deregulated protein tyrosine kinase activity can cause malignant transformation. The catalytic activity of the T cell protein tyrosine kinase p56lck is normally suppressed by phosphorylation of a carboxyl-terminal tyrosine, Tyr-505, by another cellular protein tyrosine kinase. Here we characterize a human cytosolic 50 kDa protein tyrosine kinase, p50csk, which specifically phosphorylates Tyr-505 of p56lck and a synthetic peptide containing this site. Phosphorylation of Tyr-505 suppressed the catalytic activity of p56lck. We suggest that p50csk negatively regulates p56lck, and perhaps other cellular src family kinases.  相似文献   

11.
Gangliosides induce a selective and complete modulation of CD4 from the surface of T cells. CD4 down-modulation occurs by CD4 endocytosis. This process is independent of serine phosphorylation of the cytoplasmic tail of CD4 and does not require the association between the tyrosine protein kinase p56lck and the cytoplasmic tail of CD4. Ganglioside-induced CD4 endocytosis is accompanied by the loss of p56lck activity associated with CD4. Sequential immunoprecipitation analysis using an anti-CD4 antibody and an anti-p56lck antiserum showed that this is caused by the dissociation of the enzyme from the cytoplasmic tail of CD4. The kinetics of p56lck dissociation after ganglioside treatment is identical to that of CD4 endocytosis, suggesting that p56lck is displaced in the process of endosome formation. The results indicate that CD4 endocytosis alone can cause the dissociation of the p56lck complex without the requirement for CD4 phosphorylation.  相似文献   

12.
The p56lck and p59fyn protein tyrosine kinases are important signal transmission elements in the activation of mature T lymphocytes by ligands to the T-cell antigen receptor (TCR)/CD3 complex. The lack of either kinase results in deficient early signaling events, and pharmacological agents that block tyrosine phosphorylation prevent T-cell activation altogether. After triggering of the TCR/CD3 complex, both kinases are moderately activated and begin to phosphorylate cellular substrates, but the molecular mechanisms responsible for these changes have remained unclear. We recently found that the p72syk protein tyrosine kinase is physically associated with the TCR/CD3 complex and is rapidly tyrosine phosphorylated and activated by receptor triggering also in T cells lacking p56lck. Here we examine the regulation of p72syk and its interaction with p56lck in transfected COS-1 cells. p72syk was catalytically active and heavily phosphorylated on its putative autophosphorylation site, Tyr-518/519. Mutation of these residues to phenylalanines abolished its activity in vitro and toward cellular substrates in vivo and reduced its tyrosine phosphorylation in intact cells by approximately 90%. Coexpression of lck did not alter the catalytic activity of p72syk, but the expressed p56lck was much more active in the presence of p72syk than when expressed alone. This activation was also seen as increased phosphorylation of cellular proteins. Concomitantly, p56lck was phosphorylated at Tyr-192 in its SH2 domain, and a Phe-192 mutant p56lck was no longer phosphorylated by p72syk. Phosphate was also detected in p56lck at Tyr-192 in lymphoid cells. These findings suggest that p56lck is positively regulated by the p72syk kinase.  相似文献   

13.
CD5 is a T-cell-specific antigen which binds to the B-cell antigen CD72 and acts as a coreceptor in the stimulation of T-cell growth. CD5 associates with the T-cell receptor zeta chain (TcR zeta)/CD3 complex and is rapidly phosphosphorylated on tyrosine residues as a result of TcR zeta/CD3 ligation. However, despite this, the mechanism by which CD5 generates intracellular signals is unclear. In this study, we demonstrate that CD5 is coupled to the protein-tyrosine kinase p56lck and can act as a substrate for p56lck. Coexpression of CD5 with p56lck in the baculovirus expression system resulted in the phosphorylation of CD5 on tyrosine residues. Further, anti-CD5 and anti-p56lck coprecipitated each other in a variety of detergents, including Nonidet P-40 and Triton X-100. Anti-CD5 also precipitated the kinase from various T cells irrespective of the expression of TcR zeta/CD3 or CD4. No binding between p59fyn(T) and CD5 was detected in T cells. The binding of p56lck to CD5 induced a 10- to 15-fold increase in p56lck catalytic activity, as measured by in vitro kinase analysis. In vivo labelling with 32P(i) also showed a four- to fivefold increase in Y-394 occupancy in p56lck when associated with CD5. The use of glutathione S-transferase-Lck fusion proteins in precipitation analysis showed that the SH2 domain of p56lck could recognize CD5 as expressed in the baculovirus expression system. CD5 interaction with p56lck represents a novel variant of a receptor-kinase complex in which receptor can also serve as substrate. The CD5-p56lck interaction is likely to play roles in T-cell signalling and T-B collaboration.  相似文献   

14.
The tyrosine protein kinase p56lck transduces signals important for antigen-induced T-cell activation. In transgenic mice, p56lck is oncogenic when overexpressed or expressed as a mutant, catalytically activated enzyme. In humans, the LCK gene is located at the breakpoint of the t(1;7)(p34;q34) chromosomal translocation. This translocation positions the beta T-cell receptor constant region enhancer upstream of the LCK gene without interrupting the LCK coding sequences, and a translocation of this sort occurs in both the HSB2 and the SUP-T-12 T-cell lines. We have found that, although the level of the p56lck protein in HSB2 cells is elevated approximately 2-fold in comparison with that in normal T-cell lines, total cellular tyrosine protein phosphorylation is elevated approximately 10-fold. Increased levels of phosphotyrosine in HSB2 cells resulted from mutations in the LCK gene that activated its function as a phosphotransferase and converted it into a dominant transforming oncogene. The oncogenic p56lck in HSB2 cells contained one amino acid substitution within the CD4/CD8-binding domain, two substitutions in the kinase domain, and an insertion of Gln-Lys-Pro (QKP) between the SH2 and kinase domains. In NIH 3T3 fibroblasts, three of these mutations cooperated to produce the fully oncogenic form of this p56lck variant. These results suggest that mutation of LCK may contribute to some human T-cell leukemias.  相似文献   

15.
Because the binding of HIV-1 envelope to CD4 initiates a configurational change in glycoprotein 120 (gp120), enabling it to interact with fusion coreceptors, we investigated how this process interferes with the expression and function of CXC chemokine receptor 4 (CXCR4) in CD4+ T lymphocytes. A recombinant gp120 (MN), after preincubation with CD4+ T lymphocytes, significantly inhibited the binding and chemotaxis of the cells in response to the CXCR4 ligand stromal cell-derived factor-1alpha (SDF-1alpha), accompanied by a markedly reduced surface expression of CXCR4. gp120, but not SDF-1alpha, induced rapid tyrosine phosphorylation of src-like kinase p56lck in CD4+ T cells, whereas both gp120 and SDF-1alpha caused phosphorylation of the CXCR4. The tyrosine kinase inhibitor herbimycin A abolished the phosphorylation of p56lck and CXCR4 induced by gp120 in association with maintenance of normal expression of cell surface CXCR4 and a migratory response to SDF-1alpha. Thus, a CD4-associated signaling molecule(s) including p56lck is activated by gp120 and is required for the down-regulation of CXCR4.  相似文献   

16.
The lck proto-oncogene encodes a lymphocyte-specific member of the src family of protein tyrosine kinases. Here we demonstrate that pp56lck is phosphorylated in vivo at a carboxy-terminal tyrosine residue (Tyr-505) analogous to Tyr-527 of pp60c-src. Substitution of phenylalanine for tyrosine at this position resulted in increased phosphorylation of a second tyrosine residue (Tyr-394) and was associated with an increase in apparent kinase activity. In addition, this single point mutation unmasked the oncogenic potential of pp56lck in NIH 3T3 cell transformation assays. Viewed in the context of similar results obtained with pp60c-src, it is likely that the enzymatic activity and transforming ability of all src-family protein tyrosine kinases can be regulated by carboxy-terminal tyrosine phosphorylation. We further demonstrate that overexpression of pp56lck in the murine T-cell lymphoma LSTRA as a result of a retroviral insertion event produces a kinase protein that despite wild-type primary structure is nevertheless hypophosphorylated at Tyr-505. Thus, control of normal growth in this lymphoid cell line may have been abrogated through acquisition of a posttranslationally activated version of pp56lck.  相似文献   

17.
p56(lck) is a protein tyrosine kinase expressed throughout T cell development. It associates noncovalently with the cytoplasmic domains of the CD4 and CD8 coreceptor molecules and has been implicated in TCR signaling in mature T cells. Its role in early thymocyte differentiation has been demonstrated in vivo, both by targeted gene disruption and by transgene expression. Previously, we showed that expression of a dominant-negative form of p56(lck) in double-positive thymocytes inhibits positive selection. We now demonstrate that expression of constitutively activated p56(lck) (p56(lck)F505) accelerates the transition from the double-positive to the single-positive stage. Importantly, p56(lck)F505 drives survival and lineage commitment of thymocytes in the absence of TCR engagement by appropriate MHC molecules. These results indicate that activation of p56(lck) constitutes an early step in conveying maturational signals after TCR ligation by a positively selecting ligand. Our study provides direct in vivo evidence for the role of p56(lck) in regulating TCR signaling.  相似文献   

18.
Mice homozygous for the autosomal recessive lpr gene have a disorder that results in autoimmunity and massive accumulation of T lymphocytes lacking CD4 and CD8 surface markers. These abnormal T cells exhibit constitutive tyrosine phosphorylation of a component of the CD3-T-cell receptor complex. We compared membrane tyrosine phosphorylation in lpr/lpr CD4- CD8- T cells and control T cells, lpr membranes exhibited a 7.3-fold increase (n = 16) in tyrosine phosphorylation of a 60-kilodalton protein. The increase was correlated with the Lpr but not the CD4- CD8- phenotype in that p60 phosphorylation was not increased in membranes from normal CD4- CD8- thymocytes. To identify the p60 in lpr cells, we examined the activity of several T-cell tyrosine-specific protein kinases. p56lck phosphorylation was only slightly increased in lpr membranes (2.2-fold; n = 16). Phorbol ester treatment of intact T cells before membrane isolation caused p56lck to migrate as pp60lck; however, pp60lck could be clearly distinguished from the pp60 in lpr cells by two-dimensional gel electrophoresis. The pp60 from lpr cells exhibited several isoforms at pH approximately 6.3 to 6.5. Although on two-dimensional gels pp60c-src had a pI (6.4 to 6.8) within a similar region, p60c-src mRNA, protein, and kinase activities were not increased in lpr cells. In addition, staphylococcal V8 proteolytic cleavage of the lpr pp60 isolated on two-dimensional gels yielded two major fragments, a pattern distinct from that of pp60c-src. However, by using an antiserum against the C-terminal sequence of c-Src and other related kinases, including p59fyn, the pp60 could be immunoprecipitated in greater amounts from lpr than from control T cells. When pp59(fyn) was selectively immunoprecipitated from T-cell membranes with specific antisera, its molecular weight, proteolytic cleavage pattern, and behavior on two-dimensional gels were identical to those of the pp60 from lpr cells. We conclude that p59(fyn) phosphorylation is increased in membranes from lpr/lpr CD4(-) CD8(-) T cells and that the increase is correlated with constitutive tyrosine phosphorylation and perhaps with the expansion of this unusual T-cell population.  相似文献   

19.
The CD45 tyrosine phosphatase lowers T-cell antigen receptor signalling thresholds by its positive actions on p56(lck) tyrosine kinase function. We now show that mice expressing active lck(F505) at non-oncogenic levels develop aggressive thymic lymphomas on a CD45(-/-) background. CD45 suppresses the tumorigenic potential of the kinase by dephosphorylation of the Tyr394 autophosphorylation site. In CD45(-/-) thymocytes the kinase is switched to a hyperactive oncogenic state, resulting in increased resistance to apoptosis. Transformation occurs in early CD4(-)CD8(-) thymocytes during the process of TCR-beta chain rearrangement by a recombinase-independent mechanism. Our findings represent the first example in which a tyrosine phosphatase in situ prevents the oncogenic actions of a SRC: family tyrosine kinase.  相似文献   

20.
The CD4 and CD8 antigens on T cells have been shown to associate with the Src family member p56lck and a GTP-binding protein, p32. The identification of receptor interactions with intracellular mediators is essential in the elucidation of downstream signals mediated by engagement of these receptor complexes. In this study, we report the detection of an additional 110-kDa polypeptide (p110) associated with the CD4-p56lck complex in human peripheral blood T lymphocytes and leukemic T-cell lines. p110 bound preferentially to CD4-p56lck as an assembled complex and poorly, if at all, to the individual components. p110 was recognized directly by an antiserum to the C-terminal region of the serine/threonine kinase Raf-1 and is related to a p110 polypeptide detected in anti-Raf-1 immunoprecipitates. Despite its association with the CD4-p56lck complex, p110 was found to be phosphorylated predominantly on serine residues. Furthermore, phorbol ester treatment of cells resulted in a transient increase in the detection of p110 associated with CD4-p56lck, concomitant with the modulation of CD4-p56lck from the cell surface. This Raf-1-related p110 is therefore likely to play a role in signals generated from the CD4-p56lck complex. p110 may serve as a bridge between the CD4-p56lck complex and the serine/threonine kinase pathways of T-cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号