首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syrian hamster cell lines selected in multiple steps for resistance to high levels of N-(phosphonacetyl)-L-aspartate (PALA) contain many copies of the gene coding for the pyrimidine pathway enzyme CAD. Approximately 500 kilobases of additional DNA was coamplified with each copy of the CAD gene in several cell lines. To investigate its structure and organization, we cloned ca. 162 kilobases of coamplified DNA from cell line 165-28 and ca. 68 kilobases from cell line B5-4, using a screening method based solely on the greater abundance of amplified sequences in the resistant cells. Individual cloned fragments were then used to probe Southern transfers of genomic DNA from 12 different PALA-resistant mutants and the wild-type parents. A contiguous region of DNA ca. 44 kilobases long which included the CAD gene was amplified in all 12 mutants. However, the fragments cloned from 165-28 which were external to this region were not amplified in any other mutant, and the external fragments cloned from B5-4 were not amplified in two of the mutants. These results suggest that movement or major rearrangement of DNA may have accompanied some of the amplification events. We also found that different fragments were amplified to different degrees within a single mutant cell line. We conclude that the amplified DNA was not comprised of identical, tandemly arranged units. Its structure was much more complex and was different in different mutants. Several restriction fragments containing amplified sequences were found only in the DNA of the mutant cell line from which they were isolated and were not detected in DNA from wild-type cells or from any other mutant cells. These fragments contained novel joints created by rearrangement of the DNA during amplification. The cloned novel fragments hybridized only to normal fragments in every cell line examined, except for the line from which each novel fragment was isolated or the parental population for that line. This result argues that "hot spots" for forming novel joints are rare or nonexistent.  相似文献   

2.
The P388rm and P388rx cell lines resistant to antracycline antibiotics were obtained as a result of chemotherapy of mice bearing P388 leukemia, by means of increasing dosages of rubomycin and ruboxyl, respectively. These cell lines possessed cross-resistance to vinblastine, vincristine, colchicine, actinomycin D and some other drugs. Multidrug resistance (MDR) of P388rm and P388rx is due to decreased uptake of different cytotoxic compounds by the cells. Development of resistance to rubomycin and ruboxyl was accompanied by the appearance of additional chromosomal structures--long homogeneously staining regions (HSRs), double minute chromosomes and others usually containing amplified DNA sequences. Southern blot-hybridization with cloned DNA fragments amplified in Djungarian and Chinese hamster cell lines having MDR has revealed in P388rm and P388rx cells approximately 50-fold amplification of mdr and pC52 genes. Thus, in mouse leukemia cells which acquired MDR in vivo, as a result of chemotherapy, amplification is observed of the same genes that undergo amplification during selection of cell cultures for MDR in vitro.  相似文献   

3.
Eleven independent lines of Syrian hamster cells were selected by using very low levels of N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartate transcarbamylase. The protocol employed insured that each resistant cell arose during one of the last divisions before selection was applied. Cells of each mutant line contained an amplification of the structural gene for CAD, a trifunctional protein which includes aspartate transcarbamylase and two other enzymes of UMP biosynthesis. Strikingly, despite the minimal selection employed, the degree of amplification of the CAD gene was 6 to 10 times the normal diploid number in all 11 cases. In situ hybridization indicated that the amplified CAD genes were almost always present at a single chromosomal site in each line. Therefore, one of the two alleles was amplified 11- to 19-fold. The rates at which cells became resistant to PALA, determined by fluctuation analysis, were 100 times less dependent on drug concentration than were the frequencies of resistant cells in steady-state populations. The relatively shallow dependence of this rate upon PALA concentration is consistent with our independent observation that most events gave rise to a similar degree of amplification. In six of six cell lines examined, the levels of CAD mRNA and aspartate transcarbamylase activity were elevated two- to fourfold. These lines were resistant to PALA concentrations 20- to 80-fold higher than the ones used for selection. The organization of amplified DNA was examined by hybridizing Southern blots with cloned DNA fragments containing amplified sequences, previously isolated from two cell lines resistant to high levels of PALA. A contiguous region of DNA approximately 44 kilobases long which included the CAD gene was amplified in five of five single-step mutants examined. Outside this region, these mutants shared amplified sequences with only one of the two highly resistant lines.  相似文献   

4.
5.
Malignantly transformed mouse fibroblasts synthesize and secrete large amounts of major excreted protein (MEP), a 39,000-dalton precursor to an acid protease (cathepsin L). To evaluate the possible role of this protease in the transformed phenotype, we transfected cloned genes for mouse or human MEP into mouse NIH 3T3 cells with an expression vector for the dominant, selectable human multidrug resistance (MDR1) gene. The cotransfected MEP sequences were efficiently coamplified and transcribed during stepwise selection for multidrug resistance in colchicine. The transfected NIH 3T3 cell lines containing amplified MEP sequences synthesized as much MEP as did Kirsten sarcoma virus-transformed NIH 3T3 cells. The MEP synthesized by cells transfected with the cloned mouse and human MEP genes was also secreted. Elevated synthesis and secretion of MEP by NIH 3T3 cells did not change the nontransformed phenotype of these cells.  相似文献   

6.
We have previously cloned and characterized two different dihydrofolate reductase amplicon types from a methotrexate-resistant Chinese hamster ovary cell line (CHOC 400). The largest of these (the type I amplicon) is 273 kilobases (kb) in length. In the present study, we utilized clones from the type I amplicon as probes to analyze the size and variability of the amplified DNA sequences in five other independently isolated methotrexate-resistant Chinese hamster cell lines. Our data indicated that the predominant amplicon types in all but one of these cell lines are larger than the 273-kb type I sequence. In-gel renaturation experiments as well as hybridization analysis of large SfiI fragments separated by pulse-field gradient gel electrophoresis showed that two highly resistant cell lines (A3 and MK42) have amplified very homogeneous core sequences that are estimated to be at least 583 and 653 kb in length, respectively. Thus, the sizes of the major amplicon types can be different in different drug-resistant Chinese hamster cell lines. However, there appears to be less heterogeneity in size and sequence arrangement within a given methotrexate-resistant Chinese hamster cell line than has been reported for several other examples of DNA sequence amplification in mammalian systems.  相似文献   

7.
8.
Fluorescence microscopy has shown that 18 different fluorescent dyes, staining various intracellular structures in transformed hamster fibroblasts (DM-15), did not stain or stained weakly multidrug-resistant cells selected from DM-15 by colchicine. Reduced staining by fluorescent dyes was characteristic also of five other tested multidrug-resistant cell lines of hamster and mouse origin, selected by actinomycin D, colcemid, rubomycin, and ruboxyl. The intensity of staining of two revertant cell lines was similar to that of parental sensitive cells. All tested inhibitors of multidrug resistance, including weak detergent, metabolic inhibitors, calcium channel blockers, calmodulin inhibitors, and reserpine, restored normal staining of multidrug-resistant cells. The dyes accumulated in resistant cells in presence of these inhibitors left the cells several minutes after the removal of the inhibitor from the incubation medium. Sensitive cells retained the dyes for several hours. The efflux of the dyes from resistant cells is an active process since it occurred even in the presence of the dyes in the incubation medium. The efflux could be blocked by all tested inhibitors of multidrug resistance and it is possibly a basic mechanism of the reduced staining of resistant cells. These data support the idea that multidrug resistance is based on active nonspecific efflux of the drugs and indicate that the simple procedure of cell staining can be used for the detection of resistant cells and further study of the phenomenon of multidrug resistance.  相似文献   

9.
Mouse NIH 3T3 cells were transformed to multidrug resistance with high-molecular-weight DNA from multidrug-resistant human KB carcinoma cells. The patterns of cross resistance to colchicine, vinblastine, and doxorubicin hydrochloride (Adriamycin; Adria Laboratories Inc.) of the human donor cell line and mouse recipients were similar. The multidrug-resistant human donor cell line contains amplified sequences of the mdr1 gene which are expressed at high levels. Both primary and secondary NIH 3T3 transformants contained and expressed these amplified human mdr1 sequences. Amplification and expression of the human mdr1 sequences and amplification of cotransferred human Alu sequences in the mouse cells correlated with the degree of multidrug resistance. These data suggest that the mdr1 gene is likely to be responsible for multidrug resistance in cultured cells.  相似文献   

10.
Novel indolo[2,3-b]quinoline derivatives substituted at N-6 and C-2 or C-9 positions with (dimethylamino)ethyl chains linked to heteroaromatic core by ether, amide or amine bonds, were manufactured and evaluated in vitro for their cytotoxic activity against several cell lines of different origin including multidrug resistant sublines and tested for their ability to influence the cell cycle and inhibit topoisomerase II activity. It was found, that all compounds show cytotoxic activity against cell lines tested, including multidrug resistant LoVo/DX, MES-SA/DX5 and HL-60 sublines. The tested compounds induce the G(2)M phase cell cycle arrest in Jurkat cells, and inhibit topoisomerase II activity.  相似文献   

11.
12.
The levels of UMP synthase protein and mRNA are increased in rat hepatoma cells that have acquired resistance to pyrazofurin, a potent inhibitor of pyrimidine biosynthesis. A cDNA plasmid library was prepared from partially purified poly(A)+ mRNA isolated from the resistant cell line. Recombinant plasmids with inserts complementary to UMP synthase mRNA were selected by differential hybridization with cDNA prepared from wild type and resistant cell mRNA and analysis of hybrid-selected mRNA by in vitro translation reactions. One plasmid, pUMPS-2, contains a 850-base pair insert and was used to analyze UMP synthase gene sequences in the wild type and resistant cell lines. Blot hybridization of restricted genomic DNA demonstrated amplification of the UMP synthase gene in the resistant cells. The number of UMP synthase genes is increased 15-fold as determined by a modified dot hybridization procedure. Previous studies have shown that the resistant cells have a 16-fold increase in UMP synthase mRNA but a 40-fold increase in synthase activity (Suttle, D.P. (1983) J. Biol. Chem. 258, 7707-7713). To further investigate this discrepancy between the amount of increase in DNA and mRNA versus the increase in enzyme activity, we have determined the relative rate of synthesis and degradation of UMP synthase. The rate of synthesis was 13-fold faster in the resistant cells. The degradation rate was not significantly different between the two cell lines. These data indicate that gene amplification is the major factor contributing to the enzyme overproduction in the pyrazofurin-resistant cells.  相似文献   

13.
Mutant Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate, a potent and specific inhibitor of aspartate transcarbamylase, have amplified the gene coding for the multifunctional protein (CAD) that includes this activity. The average amount of DNA amplified is approximately 500 kilobases per gene copy, about 20 times the length of the CAD gene itself. A differential screening method which uses genomic DNAs as probes was developed to isolate recombinant phage containing fragments of amplified DNA. One probe was prepared by reassociating fragments of total genomic DNA from 165-28, a mutant cell line with 190 times the wild-type complement of CAD genes, until all of the sequences repeated about 200 times were annealed and then isolating the double-stranded DNA with hydroxyapatite.This DNA was highly enriched in sequences from the entire amplified region, whereas the same sequences were very rare in DNA prepared similarly from wild-type cells. After both DNAs were labeled by nick translation, highly repeated sequences were removed by hybridization to immobilized total genomic DNA from wild-type cells. A library of cloned DNA fragments from mutant 165-28 was screened with both probes, and nine independent fragments containing about 165 kilobases of amplified DNA, including the CAD gene, have been isolated so far. These cloned DNAs can be used to study the structure of the amplified region, to evaluate the nature of the amplification event, and to investigate gene expression from the amplified DNA. For example, one amplified fragment included a gene coding for a 3.8-kilobase, cytoplasmic, polyadenylated RNA which was overproduced greatly in cells resistant to N-(phosphonacetyl)-L-aspartate. The method for cloning amplified DNA is general and can be used to evaluate the possible involvement of gene amplification in phenomena such as drug resistance, transformation, or differentiation. DNA fragments corresponding to any region amplified about 10-fold or more can be cloned, even if no function for the region is known. The method for removing highly repetitive sequences from genomic DNA probes should also be of general use.  相似文献   

14.
The refractory nature of many human cancers to multi-agent chemotherapy is termed multidrug resistance (MDR). In the past several decades, a major focus of clinical and basic research has been to characterize the genetic and biochemical mechanisms mediating this phenomenon. To provide model systems in which to study mechanisms of multidrug resistance,in vitro studies have established MDR cultured cell lines expressing resistance to a broad spectrum of unrelated drugs. In many of these cell lines, the expression of high levels of multidrug resistance developed in parallel to the appearance of cytogenetically-detectable chromosomal anomalies resulting from gene amplification. This review describes cytogenetic and molecular-based studies that have characterized DNA amplification structures in MDR cell lines and describes the important role gene amplification played in the cloning and characterization of the mammalian multidrug resistance genes (mdr). In addition, this review discusses the genetic selection generally used to establish the MDR cell lines, and how drug selections performed in transformed cell lines generally favor the genetic process of gene amplification, which is still exploited to identify drug resistance genes that may play an important role in clinical MDR.  相似文献   

15.
The N-myc amplification of human neuroblastomas was characterized by the amplified DNA cloned from the cell line MC-NB-1 using the phenol emulsion reassociation technique (PERT). A number of PERT clones exhibiting amplification in this cell line were tested for amplification in other neuroblastoma cell lines. In almost all cell lines examined, only a few clones were co-amplified with N-myc and most of the others were exclusively amplified in a subset of the cell lines. The total aggregate size of the Hind III fragment identified by the PERT clones was approximately 350 kb. Most of the PERT clones were mapped to human chromosome (chr) 2p23-2pter, where the N-myc gene is located. Four types of amplicons, the 100, 420, 480 and 520 kb fragments, shown to be Not I fragments, were identified by hexagonal field gel electrophoresis. Three fragments are ordered in a head-to-tail array, and the remaining fragment is either ordered in a tail-to-head array or something else. Despite the extremely unusual construction of the amplified sequences in this cell line as compared with others, there was a low degree of sequence heterogeneity among the amplicons within this cell line. These observations lead to the idea that the complex rearrangements that give rise to the heterogeneous organization of the amplified sequences among the different cell lines precede the amplification of these sequences.  相似文献   

16.
Vincristine-resistant (VCR) Chinese hamster ovary (CHO) cells have been established by stepwise selection in increasing concentrations of vincristine. These cells exhibit multidrug cross-resistance to a number of drugs that have no structural or functional similarities. Cytogenetic analyses of resistant cells revealed the presence of double minutes and expanded chromosomal segments, thus implicating gene amplification as a possible mechanism of resistance. An amplified DNA segment isolated from other multidrug cross-resistant CHO cell lines (Roninson, I. B., H. T. Abelson, D. E. Housman, N. Howell, and A. Varshavsky, 1984, Nature (Lond.), 309:626-628) is also amplified in our VCR lines. This DNA segment was used as a probe to screen a cosmid library of VCR genomic DNA, and overlapping clones were retrieved. All of these segments, totaling approximately 45 kilobases (kb), were amplified in VCR cells. Using in situ hybridization, we localized the amplification domain to the long arm of CHO chromosome 1 or Z1. Northern hybridization analysis revealed that a 4.3-kb mRNA was encoded by this amplified DNA domain and was over-produced in the VCR cells. Suggestions for the involvement of these amplified DNA segments in the acquisition of multidrug cross-resistance in animal cells are also presented.  相似文献   

17.
Earlier we have found that the development of resistance to colchicine in mammalian cells in vitro is due to gene amplification leading to decreased plasma membrane permeability to the selective agent and some other unrelated drugs. By a stepwise self-renaturation procedure followed by chromatography on hydroxyapatite we isolated the fraction of middle-repeated sequences (DNAc0t = 10-250) enriched in amplified DNA from the DNA of colchicine-resistant Djungarian hamster cell line. Blotting-hybridization with [32P]DNAc0t = 10-250 performed in the presence of the excess of unlabelled DNA from wild type cells reveals amplified sequences in resistant cell lines. The comparison of DNAs from cell lines resistant to colchicine, adriablastin and actinomycin D showed that common but not identical DNA sequences are amplified in these cases. In situ hybridization with [3H]DNAc0t = 10-250 indicates that amplified sequences are located in the long homogeneously staining regions (HSRs) of the marker chromosomes. These results suggest that DNAc0t = 10-250 may be used for screening of recombinant molecules containing amplified sequences.  相似文献   

18.
Stable variants resistant to pyrazofurin (PF) and 6-azauridine (AZUrd) were serially selected in increasing drug concentrations from an MC3T3-E1 nontumorigenic murine osteoblastic cell line. Monophosphates of both AZUrd and PF competitively inhibit orotidine-5'-monophosphate decarboxylase (ODCase) activity of the UMP synthase multifunctional enzyme. When compared to the wild type cells, the AZUrdr and PFr lines were 3000- and 10,000-fold more resistant, respectively. Flow cytometry indicated tetraploidy in wild type cells and a reduction of DNA content in both resistant cell lines. DNA dot blot analysis showed no amplification of the gene coding for UMP synthase in either AZUrdr or PFr cells. Measurements of UMP synthase showed a 6-fold higher activity in AZUrdr cells and no significant difference in PFr cells as compared to wild type. Sensitivity to 5-fluorouracil was increased in the AZUrdr line as opposed to PFr and normal cell lines, indicating an increased orotate phosphoribosyltransferase activity in the AZUrdr cells. In comparison to wild type cells, PFr cells were 100-fold resistant to 6-methylmercaptopurine riboside, suggesting a lack of adenosine kinase activity. The control and AZUrdr cells showed equal sensitivity to 5-fluorouridine, thus indicating unchanged uridine kinase levels. While PFr cells were not cross-resistant to AZUrd, the AZUrdr cells were cross-resistant to PF. These results indicate the possibility of an altered ODCase active site. Although amplification of unrelated sequences cannot be excluded, our findings show that bone tetraploid, nontumorigenic cells acquire drug resistance through mechanisms other than the amplification of a target gene and that this resistance is accompanied by the partial loss of a chromosomal complement.  相似文献   

19.
We have compared some mechanisms involved in the defense against doxorubicin-induced free radical damage in rat hepatoma and glioblastoma cell lines and their doxorubicin-resistant variants presenting an overexpression of the multidrug resistance gene.

Immediate in vivo production of malondialdehyde was minor and was not different in sensitive and resistant cells. Alpha-tocopherol was undetectable in all cell lines. Glutathione levels were not different in sensitive and resistant cells and these levels did not vary upon doxorubicin treatment. Resistant cells exhibited either a 50% decrease (hepatoma) or a 25% increase (glioblastoma) of glutathione-S-transferase activity. Glutathione reductase presented no important change upon acquisition of resistance. In contrast, selenium-dependent glutathione peroxidase activity was consistently 2-6-fold increased in the resistant cells, which suggests a magnification of protection mechanisms against hydroxyle radical formation from H2O2 in resistant cells. Depletion of glutathione levels by buthionine sulfoximine sensitized hepatoma resistant cells to doxorubicin, but had no effect on doxorubicin cytotoxicity to glioblastoma cells.  相似文献   

20.
《Free radical research》2013,47(1-3):137-144
We have compared some mechanisms involved in the defense against doxorubicin-induced free radical damage in rat hepatoma and glioblastoma cell lines and their doxorubicin-resistant variants presenting an overexpression of the multidrug resistance gene.

Immediate in vivo production of malondialdehyde was minor and was not different in sensitive and resistant cells. Alpha-tocopherol was undetectable in all cell lines. Glutathione levels were not different in sensitive and resistant cells and these levels did not vary upon doxorubicin treatment. Resistant cells exhibited either a 50% decrease (hepatoma) or a 25% increase (glioblastoma) of glutathione-S-transferase activity. Glutathione reductase presented no important change upon acquisition of resistance. In contrast, selenium-dependent glutathione peroxidase activity was consistently 2-6-fold increased in the resistant cells, which suggests a magnification of protection mechanisms against hydroxyle radical formation from H2O2 in resistant cells. Depletion of glutathione levels by buthionine sulfoximine sensitized hepatoma resistant cells to doxorubicin, but had no effect on doxorubicin cytotoxicity to glioblastoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号