首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 254 毫秒
1.
Mutant Syrian hamster cells resistant to N-(phosphonacetyl)-L-aspartate (PALA), a transition state analog inhibitor of aspartate transcarbamylase, overproduce CAD, a multifunctional protein which catalyzes the first three reactions of de novo UMP biosynthesis. Increased levels of a single mRNA cause the overproduction of CAD in all PALA-resistant mutants examined thus far. A recombinant plasmid containing a 2,3-kilobase insert complementary to the 3'-proximal region of this 7.9-kilobase mRNA has been prepared and used to show that the CAD gene is amplified in each of the 10 PALA-resistant mutants examined. Rates of association of CAD sequences in DNA isolated from PALA-sensitive and PALA-resistant cells with labeled plasmid DNA indicated that the degree of amplification is approximately equal to the degree of overproduction of protein and mRNA in each mutant. The patterns of digestion of these DNAs with restriction enzymes confirmed this result and showed that the lower limit for the size of the amplified unit is 19 kilobases, much larger than the mRNA. A comparison of restriction endonuclease digests of the cloned cDNA with digests of genomic DNA indicated that part of this difference is attributable to intervening sequences in the CAD gene. A 10.2-kilobase RNA which contains CAD sequences is found in cytoplasmic fractions from some PALA-resistant mutants but not in wild type cells. Restriction patterns were analyzed by a new method in which fragments of DNA are transferred from agarose gels to diazo paper with a high efficiency which is independent of size.  相似文献   

2.
Cells often acquire resistance to the antiproliferative agents methotrexate (MTX) or N-phosphonacetyl-L-aspartate (PALA) through amplification of genes encoding the target enzymes dihydrofolate reductase or carbamylphosphate synthetase/aspartate transcarbamylase/dihydroorotase (CAD), respectively. We showed previously that Syrian hamster BHK cells resistant to selective concentrations of PALA (approximately 3 x ID50) arise at a rate of approximately 10(-4) per cell per generation and contain amplifications of the CAD gene as ladder-like structures on one of the two B9 chromosomes, where CAD is normally located. We now find that BHK cells resistant to high concentrations of PALA (approximately 15 x ID50) appear only after prior exposure to selective concentrations of PALA for approximately 72 h. Furthermore, in contrast to untreated cells, BHK cells pretreated with selective concentrations of MTX give colonies in high concentrations of PALA, and cells pretreated with selective concentrations of PALA give colonies in high concentrations of MTX or 5-fluorouracil. As judged by measuring numbers of cells and metaphase cell pairs, BHK cells do not arrest completely when starved for pyrimidine nucleotides by treatment with selective concentrations of PALA for up to 72 h. We propose that DNA damage, caused when cells fail to stop DNA synthesis promptly under conditions of dNTP starvation, stimulates amplification throughout the genome by mechanisms--such as bridge-breakage-fusion cycles--that are triggered by broken DNA. Amplified CAD genes were analyzed by fluorescence in situ hybridization both in cells where amplification was induced by PALA pretreatment and in cells in which the amplification occurred spontaneously, before selection with PALA. The ladder-like structures that result from bridge-breakage-fusion cycles were observed in both cases.  相似文献   

3.
Syrian hamster cell lines selected in multiple steps for resistance to high levels of N-(phosphonacetyl)-L-aspartate (PALA) contain many copies of the gene coding for the pyrimidine pathway enzyme CAD. Approximately 500 kilobases of additional DNA was coamplified with each copy of the CAD gene in several cell lines. To investigate its structure and organization, we cloned ca. 162 kilobases of coamplified DNA from cell line 165-28 and ca. 68 kilobases from cell line B5-4, using a screening method based solely on the greater abundance of amplified sequences in the resistant cells. Individual cloned fragments were then used to probe Southern transfers of genomic DNA from 12 different PALA-resistant mutants and the wild-type parents. A contiguous region of DNA ca. 44 kilobases long which included the CAD gene was amplified in all 12 mutants. However, the fragments cloned from 165-28 which were external to this region were not amplified in any other mutant, and the external fragments cloned from B5-4 were not amplified in two of the mutants. These results suggest that movement or major rearrangement of DNA may have accompanied some of the amplification events. We also found that different fragments were amplified to different degrees within a single mutant cell line. We conclude that the amplified DNA was not comprised of identical, tandemly arranged units. Its structure was much more complex and was different in different mutants. Several restriction fragments containing amplified sequences were found only in the DNA of the mutant cell line from which they were isolated and were not detected in DNA from wild-type cells or from any other mutant cells. These fragments contained novel joints created by rearrangement of the DNA during amplification. The cloned novel fragments hybridized only to normal fragments in every cell line examined, except for the line from which each novel fragment was isolated or the parental population for that line. This result argues that "hot spots" for forming novel joints are rare or nonexistent.  相似文献   

4.
It has been hypothesized that genomic instability is an important component of tumorigenesis. In an attempt to establish this relationship, we determined the frequencies with which two nontumorigenic and four tumorigenic rat liver epithelial cell lines underwent a particular type of genetic instability, gene amplification. By exposing cells to N-(phosphonoacetyl)-L-aspartate (PALA), a drug which specifically inhibits the aspartate transcarbamylase activity of the multifunctional CAD enzyme and selects for amplification of the CAD gene, we observed a striking parallel between the ability of these cell lines to become resistant to this drug and the ability of these same cells to form tumors after injection into day-old syngeneic rats. Cells of one highly tumorigenic line became resistant to PALA greater than 70 times more often than those of a non-tumorigenic line. Molecular analyses of eight independent PALA-resistant subclones confirmed that, in each case, this resistance was due to amplification of the CAD gene. Thus, our results demonstrate the relationship between tumorigenicity and at least one measure of genomic instability, CAD gene amplification. The method developed in this study provides a quantitative, rapid indicator of tumorigenicity and should prove useful in trying to elucidate the underlying basis of genomic instability in neoplastic cells.  相似文献   

5.
Syrian hamster cells resistant to N-(phosphonacetyl)-L-aspartate (PALA), a specific inhibitor of the aspartate transcarbamylase activity of the multifunctional protein CAD, overproduce this protein as a result of amplification of the CAD gene. We have used a sensitive in situ hybridization technique to localize CAD genomes in spreads of metaphase chromosomes from several independent PALA-resistant lines and from wild-type PALA-sensitive cells. The amplified genes were always found within chromosomes, usually in an expanded region of the short arm of chromosome B9. In wild-type cells, the CAD gene was also on the short arm of chromosome B9. In one mutant line, 90 to 100 CAD genes were found within an expanded B9 chromosome and 10 to 15 more were near the distal end of one arm of several different chromosomes. Another line contained most the genes in a telomeric chromosome or large chromosome fragment. The amplified genes were in chromosomal regions that were stained in a banded pattern by trypsin-Giemsa. A few double minute chromosomes were observed in a very small fraction of the total spreads examined. The it situ hybridizations were performed in the presence of 10% dextral sulfate 500, which increases the signal by as much as 100-fold. Using recombinant DNA plasmids nick-translated with [125I]dCTP to high specific radioactivity, 10 CAD genes in a single chromosomal region were revealed after 1 week of autoradiographic exposure, and the position of the unique gene could be seen after 1 month.  相似文献   

6.
In Drosophila melanogaster the rudimentary locus encodes for a multifunctional protein catalyzing the first three enzymatic activities of pyrimidine biosynthesis. Cell lines were selected which were resistant to PALA (N-(phosphonoacetyl)-L-aspartate), a specific inhibitor of aspartate transcarbamylase, the second enzyme of this pathway. In a cell line where the enzyme production is increased 5 times, Southern blot analyses show that the rudimentary gene and surrounding regions are amplified about 5 times. In this case gene amplification could therefore account for the observed enzyme overproduction.  相似文献   

7.
Mutant Syrian hamster cell lines resistant to N-(phosphonacetyl)-L-aspartate, a potent and specific inhibitor of aspartate transcarbamylase, have amplified the gene coding for the multifunctional protein (CAD) that includes this activity. The average amount of DNA amplified is approximately 500 kilobases per gene copy, about 20 times the length of the CAD gene itself. A differential screening method which uses genomic DNAs as probes was developed to isolate recombinant phage containing fragments of amplified DNA. One probe was prepared by reassociating fragments of total genomic DNA from 165-28, a mutant cell line with 190 times the wild-type complement of CAD genes, until all of the sequences repeated about 200 times were annealed and then isolating the double-stranded DNA with hydroxyapatite.This DNA was highly enriched in sequences from the entire amplified region, whereas the same sequences were very rare in DNA prepared similarly from wild-type cells. After both DNAs were labeled by nick translation, highly repeated sequences were removed by hybridization to immobilized total genomic DNA from wild-type cells. A library of cloned DNA fragments from mutant 165-28 was screened with both probes, and nine independent fragments containing about 165 kilobases of amplified DNA, including the CAD gene, have been isolated so far. These cloned DNAs can be used to study the structure of the amplified region, to evaluate the nature of the amplification event, and to investigate gene expression from the amplified DNA. For example, one amplified fragment included a gene coding for a 3.8-kilobase, cytoplasmic, polyadenylated RNA which was overproduced greatly in cells resistant to N-(phosphonacetyl)-L-aspartate. The method for cloning amplified DNA is general and can be used to evaluate the possible involvement of gene amplification in phenomena such as drug resistance, transformation, or differentiation. DNA fragments corresponding to any region amplified about 10-fold or more can be cloned, even if no function for the region is known. The method for removing highly repetitive sequences from genomic DNA probes should also be of general use.  相似文献   

8.
Eucaryotic expression vectors containing the Escherichia coli pyrB gene (pyrB encodes the catalytic subunit of aspartate transcarbamylase [ATCase]) and the Tn5 phosphotransferase gene (G418 resistance module) were transfected into a mutant Chinese hamster ovary cell line possessing a CAD multifunctional protein lacking ATCase activity. G418-resistant transformants were isolated and analyzed for ATCase activity, the ability to complement the CAD ATCase defect, and the ability to resist high concentrations of the ATCase inhibitor N-(phosphonacetyl)-L-aspartate (PALA) by amplifying the donated pyrB gene sequences. We report that bacterial ATCase is expressed in these lines, that it complements the CAD ATCase defect in trans, and that its amplification engenders PALA resistance. In addition, we derived rapid and sensitive assay conditions which enable the determination of bacterial ATCase enzyme activity in the presence of mammalian ATCase.  相似文献   

9.
Drosophila cells were treated in vitro with N-phosphonacetyl- -aspartate (PALA) which is a specific inhibitor of aspartate transcarbamylase, the second enzyme of the pyrimidine biosynthetic pathway. By stepwise selection using increasing amounts of this inhibitor, PALA-resistant (PALAr) stable clones have been isolated. Enzymatic activities of aspartate transcarbamylase, carbamyl phosphate synthetase and dihydro-orotase, borne by the same multifunctional protein, CAD, are increased 6–12-fold in these resistant clones compared with parental cells. The aspartate transcarbamylase in PALAr cells is shown by physical, kinetic and immunological criteria to be normal. The data from immunotitration and immunoblotting experiments indicate that the increased enzyme activities result from the overproduction of CAD.  相似文献   

10.
We investigated the role of low molecular weight (LMW) and high molecular weight (HMW) isoforms of basic fibroblast growth factor 2 (FGF-2) in the expression of transformation-related phenotypic alterations, drug sensitivity modulation, and gene amplification potential. For this purpose, we used NIH 3T3 and A31 cells transfected with different cDNA FGF-2 constructs allowing expression of the different proteins. Both cell lines showed marked phenotypic alterations when expressing the LMW FGF-2 or the four HMW FGF-2 isoforms: they acquired a transformed morphology, grew at higher saturation densities in 10% serum, and exhibited anchorage-independent growth and increased invasive potential. However, HMW FGF-2-expressing cells also grew in 1% serum and their invasive potential was lower than in cells expressing all FGF-2 forms or LMW FGF-2 alone. We have grown the different cell lines under a selective pressure of N-(phosphonacetyl)-l-aspartate (PALA), a drug which specifically inhibits the aspartate transcarbamylase activity of the multifunctional carbamyl-P-synthetase/aspartate transcarbamylase/dihydro-orotase genes (CAD) enzyme (and thus inhibits de novo pyrimidine biosynthesis) and selects for cells with amplified copies of the CAD gene. Our results demonstrate that aberrant expression of the LMW FGF-2 and/or HMW FGF-2 isoforms differently modulates drug resistance and gene amplification properties in the NIH 3T3 and A31 cell lines by differential amplification of the CAD gene. Coexpression of all isoforms appears to be necessary to obtain cumulative effects and nuclear-targeted HMW FGF-2 has a pivotal role in such a cooperation.  相似文献   

11.
Drosophila cells were treated in vitro with N-phosphonacetyl-L-aspartate (PALA) which is a specific inhibitor of aspartate transcarbamylase, the second enzyme of the pyrimidine biosynthetic pathway. By stepwise selection using increasing amounts of this inhibitor, PALA-resistant (PALAr) stable clones have been isolated. Enzymatic activities of aspartate transcarbamylase, carbamyl phosphate synthetase and dihydro-orotase, borne by the same multifunctional protein, CAD, are increased 6-12-fold in these resistant clones compared with parental cells. The aspartate transcarbamylase in PALAr cells is shown by physical, kinetic and immunological criteria to be normal. The data from immunotitration and immunoblotting experiments indicate that the increased enzyme activities result from the overproduction of CAD.  相似文献   

12.
Structure of DNA formed in the first step of CAD gene amplification.   总被引:17,自引:3,他引:14       下载免费PDF全文
E Giulotto  I Saito    G R Stark 《The EMBO journal》1986,5(9):2115-2121
Thirty-three independent mutant cell lines were selected in single steps for resistance to low concentrations of N-(phosphonacetyl)-L-aspartate and the structure of their amplified DNA was probed, using a set of recombinant phage and cosmids containing a total of 380 kb of amplified DNA. In all 33 cell lines, the selected CAD gene and at least 65 kb of flanking DNA were amplified, an average of 2.6-fold. Six other regions of DNA were co-amplified in all 33 mutants, but sometimes to a different extent than CAD. Novel joints, marking recombinations which link amplified regions to each other, were found surprisingly rarely. There were only three within the 380 kb of DNA sequence examined in the total of 33 cell lines. Each novel joint was present in only one copy per cell, was found in a different cell line and was homologous to a different probe. The low frequency of novel joints is consistent either with very large amplified regions in the single-step mutants, possibly 10,000 kb of co-amplified DNA for each copy of the CAD gene, or with a strong bias against recombination in the cloned sequences used as probes. Our previous finding that CAD probes hybridize in situ to unusually large chromosome arms in several single-step mutants is most consistent with the first possibility.  相似文献   

13.
To investigate the role of DNA double strand breaks (DSBs) and of their repair in gene amplification, we analyzed this process in the V3 Chinese hamster cell line and in the parental line AA8, after exposure to gamma-rays and to hydrogen peroxide (H2O2). V3 is defective in DSB repair because of a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) gene, a gene involved in the non-homologous end-joining pathway. As a measure of gene amplification we used the frequency of colonies resistant to N-(phosphonacetyl)-L-aspartate (PALA), since in rodent cells PALA resistance is mainly achieved through the amplification of the CAD (carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase) gene. After treatment with different doses of gamma-rays and of H2O2, we found a dose related increase in the frequency of gene amplification and of chromosome aberrations. When the same doses of damaging agents were used, these increments were higher in V3 than in AA8. These results indicate that DSBs that are not efficiently repaired can be responsible for the induction of gene amplification. H2O2 stimulates gene amplification as well as gamma-rays, however, at similar levels of amplification induction, chromosome damage was about 50% lower. This suggests that gene amplification can be induced by H2O2 through pathways alternative to a direct DNA damage. Stimulation of gene amplification by H2O2, which is one of the products of the aerobic metabolism, supports the hypothesis that cellular metabolic products themselves can be a source of genome instability.  相似文献   

14.
We analyzed the amplification of the CAD gene in independently isolated N-(phosphonacetyl)-L-aspartate-resistant clones derived from single parental clones in two mouse cell lines. We report for the first time that the CAD gene is amplified unstably in mouse cells, that the degree of instability varies greatly between clones, and that minute chromosomes and highly unstable chromosomelike structures contain the amplified sequences. These data are most consistent with the idea that the amplified unit in each clone consists of different flanking DNA and that such differences engender amplified sequences with unequal stability. We also introduced the mouse chromosome containing the CAD gene into hamster cells by microcell-mediated chromosome transfer to determine whether the propensity for unstable extrachromosomal amplification of the mouse CAD gene would prevail in the hamster cell nuclear environment. We report that the mouse CAD gene was amplified stably in expanded chromosomal regions in each of seven hybrids that were analyzed. This observation is consistent with the idea that the nuclear environment influences whether mutants containing intra- or extrachromosomally amplified sequences will be isolated.  相似文献   

15.
Hamster cells with increased rates of DNA amplification, a new phenotype   总被引:15,自引:0,他引:15  
E Giulotto  C Knights  G R Stark 《Cell》1987,48(5):837-845
Baby hamster kidney (BHK) cells selected simultaneously with N-phosphonacetyl-L-aspartate (PALA) and methotrexate (MTX) gave rise to doubly resistant colonies at frequencies 20 to 260 times greater than the product of the independent frequencies found with PALA or MTX alone. Double resistance was due to amplification of both target genes, CAD and DHFR. Four independent doubly resistant "MP" lines were selected and characterized. Cells resistant to coformycin, pyrazofurin, or ouabain were generated from all four MP lines at rates up to 25 times greater than the rates for BHK cells. These three drugs select cells that have amplified the genes for their target enzymes. Therefore, we conclude that the four MP lines have an amplificator phenotype. All four grew much more slowly than BHK cells, indicating that the amplificator phenotype may be linked to significant defects in metabolism or cell division.  相似文献   

16.
Resistance to phosphonacetyl-L-aspartate (PALA) is caused by CAD gene amplification. The marker chromosome of a PALA-resistant cell line containing a homogeneously staining region with amplified CAD gene was introduced into PALA-sensitive Chinese hamster cells by microcell-mediated chromosome transfer. Two monochromosomal hybrids containing the marker chromosome in addition to the normal chromosome complement of sensitive cells and 1 tetraploid hybrid containing the complete genomes of donor (resistant) and recipient (sensitive) cells were studied in detail. It was shown that (i) the presence of the marker chromosome was both a necessary and a sufficient condition for the expression of the PALA-resistant phenotype; (ii) the marker chromosome underwent rearrangements in the monochromosomal hybrids, with preferential loss of non-amplified chromosomal regions, while it was not rearranged in the tetraploid hybrid; (iii) unlike the original PALA-resistant cells obtained after long-term selection in the presence of PALA, the PALA-resistant hybrids did not show chromosomal aberrations of other than the marker chromosome. This result indicates that chromosomal aberrations may be due to the selective procedure and is not an inherent property of cells containing amplified genes.  相似文献   

17.
The amplified CAD genes in N-(phosphonacetyl)-L-aspartate (PALA)-resistant Syrian hamster cells are located in an expanded chromosomal region emanating from the site of the wild-type gene at the tip of the short arm of chromosome B-9. The terminus of B-9 in PALA-sensitive cells contains a cluster of rRNA genes (i.e., a nucleolus organizer, rDNA). We have used a molecular clone containing sequences complementary to Syrian hamster 28S rRNA to investigate whether rDNA is coamplified with CAD genes in the PALA-resistant mutants. In situ hybridization of this probe to metaphase chromosomes demonstrates that rDNA and CAD genes do coamplify in two independently isolated PALA-resistant mutants. The tight linkage of CAD and rDNA genes was demonstrated by their coordinate translocation from B-9 to the end of the long arm of chromosome C-11 in one mutant. Blot hybridization studies substantiate the in situ hybridization results. Both types of analysis indicate that only one or two rDNA genes, on the average, are coamplified per CAD gene. The data are consistent with the model that unequal exchanges between rDNA genes mediate the amplification of CAD genes in the Syrian hamster mutants that were analyzed.  相似文献   

18.
Eleven sublines with increasing resistance to N-phosphonacetyl-L-aspartate (PALA) were isolated from the V79,B7 Chinese hamster cell line. Aspartate transcarbamylase activity and CAD gene copy number increased with increasing resistance of sublines. In situ hybridization with a DNA probe for the CAD gene showed that the amplified sequences resided in the terminal region of a marker chromosome with elongated q arms. This region stained homogeneously after G-banding. A high incidence of both numerical and structural chromosome aberrations was found in PALA-resistant cells. In hyperdiploid and polyploid cells, containing 2 copies of the marker chromosome, dicentrics were found at a very high frequency. As indicated by in situ hybridization and G-banding, they originated from a rearrangement involving 2 homologous marker chromosomes.  相似文献   

19.
Large inverted duplications are associated with gene amplification   总被引:40,自引:0,他引:40  
M Ford  M Fried 《Cell》1986,45(3):425-430
Amplified DNA can be found in arrays of large repeated units, with each repeat unit containing a marker gene and surrounding DNA sequences. Amplified DNA sequences from established cell lines were assessed for the presence of repeat units in the form of inverted duplications. Inverted duplicated DNA was detected by virtue of its concentration-independent resistance to S1 hydrolysis after denaturation and rapid renaturation. Using this assay, inverted duplications were detected in amplified DNA (both DM and HSR configurations) containing the myc gene (16-50 copies/cell) in four human tumor cell lines and in amplified DNA containing the CAD gene (30-200 copies/cell) in three PALA-resistant BHK cell lines. The widespread association of inverted duplications with amplified DNA must bear on the amplification mechanism.  相似文献   

20.
The structure of amplified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) DNA of carrot suspension-cultured cell lines selected for glyphosate resistance was analyzed to determine the mechanism of gene amplification in this plant system. Southern hybridization of the amplified DNA digested with several restriction enzymes probed with a petunia EPSPS cDNA clone showed that there were differences in fragment sizes in the amplified DNA from one highly resistant cell line in comparison with the parental line. Cloning of the EPSPS gene and 5 flanking sequences was carried out and two different DNA structures were revealed. A 13 kb clone contained only one copy of the EPSPS gene while a 16 kb clone contained an inverted duplication of the gene. Southern blot analysis with a carrot DNA probe showed that only the uninverted repeated DNA structure was present in all of the cell lines during the selection process and the inverted repeat (IR) was present only in highly amplified DNA. The two structures were present in about equal amounts in the highly amplified line, TC 35G, where the EPSPS gene was amplified about 25-fold. The presence of the inverted repeat (IR) was further verified by resistance to S1 nuclease hydrolysis after denaturation and rapid renaturation, showing foldback DNA with the IR length being 9.5 kb. The junction was also sequenced. Mapping of the clones showed that the size of the amplified carrot EPSPS gene itself is about 3.5 kb. This is the first report of an IR in amplified DNA of a target enzyme gene in selected plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号