首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Nitrogen yields from undisturbed watersheds in the Americas   总被引:19,自引:11,他引:8  
Yields of total fixed nitrogen and nitrogen fractions are summarized for thirty-one watersheds in which anthropogenic disturbance of the nitrogen cycle, either through land use or atmospheric deposition, is negligible or slight. These yields are taken as representative of background conditions over a broad range of watershed areas, elevations, and vegetation types. The data set focuses on watersheds of the American tropics, but also includes information on the Gambia River (Africa) and some small watersheds in the Sierra Nevada of California. For the tropical watersheds, total nitrogen yield averages 5.1 kg ha–1 y–1. On average, 30% of the total is particulate and 70% is dissolved. Of the dissolved fraction, an average of 50% is organic and 50% is inorganic, of which 20% is ammonium and 80% is nitrate. Yields are substantially lower than previously estimated for background conditions. Yields of all nitrogen fractions are strongly related to runoff, which also explains a large percentage of variance in yield of total nitrogen (r2=0.85). For total nitrogen and nitrogen fractions, yield increases at about two-thirds the rate of runoff; concentration decreases as runoff increases. There is a secondary but significant positive relationship between elevation and yield of DIN. Ratios DON/TDN and PN/TN both are related to watershed area rather than runoff; DON/TDN decreases and PN/TN increases toward higher stream orders. The analysis suggests for tropical watersheds the existence of mechanisms promoting strong homeostasis in the yield of N and its fractions for a given moisture regime, as well as predictable downstream change in proportionate representation N fractions. Yields and concentrations for small tropical watersheds are much larger than for the few temperate ones with which comparisons are possible.  相似文献   

2.
Abstract. Termites contribute nitrogen to their habitat through the nitrogenase activity of their bacterial symbionts. Previous studies indicate that high levels of dietary nitrogen suppress nitrogen fixation in termites. We examined the effects of dietary nitrogen on fixation rates in termites in both field and laboratory experiments. Ten field cplonies of Reticulitermes were collected and assayed for nitrogenase activity in July 1993, October 1993, January 1994, and April 1994. The nitrogen content of the wood collected with each colony was determined. There was no correlation between termite nitrogen fixation rates and the amount of nitrogen in their food for any of the four collection periods. In laboratory experiments, nitrogen fixation rates decreased when termites were fed filter paper treated with 2% and 5% ammonium nitrate or a 5% mixture of the amino acids proline, tryptophan and leucine, compared to water-treated controls. By contrast, the nitrogenase activity of termites fed filter paper treated with 2% and 5% ammonium phosphate, a mixture of the amino acids histidine, serine and aspartic acid, or 2% and 5% urea did not differ from the controls. However, nitrogenase activity increased when termites were fed with 2% uric acid. No clear association exists between termite nitrogen fixation and the nitrogen content of their food.  相似文献   

3.
Spatial variations in nitrogen availability were studied in a desert community codominated byLarrea tridentata (DC.) Cov. andProsopis glandulosa Torr. Measurements of natural 15N values in tissues suggested thatProsopis obtains approximately half of its nitrogen through direct symbiotic fixation. Soils were collected under 1)Prosopis shrubs, 2)Larrea shrubs 2 m fromProsopis (LP), and 3)Larrea 2 m from otherLarrea but> 5 m from the nearestProsopis (LL).Prosopis soils showed significantly higher rates of nitrogen mineralization than LL soils in both A and B horizons. Rates of mineralization in LP soils were significantly higher than rates in LL soils only in the B horizon and were not significantly different from rates inProsopis soils. Leaf nitrogen concentrations were significantly higher in LP shrubs (2.06%) than in LL shrubs (1.78%), although 15N values did not differ between the two shrub types. Nitrogen concentrations inPerezia nana Gray, a perennial herb, were greater in plants underProsopis shrubs (2.09%) than under LP shrubs (1.93%) or LL shrubs (1.67%). Despite apparent differences in nitrogen availability, biomass ofLarrea and density ofPerezia did not differ significantly among these sites.  相似文献   

4.
5.
陕西果园主要分布区氮素投入特点及氮负荷风险分析   总被引:11,自引:0,他引:11  
赵佐平  闫莎  刘芬  王小英  同延安 《生态学报》2014,34(19):5642-5649
为了研究果园氮素投入特点及分析氮素负荷特征,加强果园氮素管理、指导果农科学合理施肥。以陕西省果园主要分布区土壤氮素分析、农户投入调查等统计数据为基础,采用盈余法从果树种类和区域角度分析果园生产体系中的氮素输入输出特点及氮素盈余状况。结果表明,陕西果园主要分布区平均化肥氮投入量927.2 kg/hm2,主要来源于尿素和复合肥,其中尿素占调查样本量的40%以上;通过有机肥投入的氮仅为139.4 kg/hm2。94.8%的果园氮素处于盈余,总体平均盈余量为876.3 kg/hm2,其中氮盈余量超过500 kg/hm2的样本占57.5%,盈余量超过1 000 kg/hm2的样本亦占了27.3%。不同果园相比,猕猴桃园氮素投入及盈余量最高,分别为1 432.9、1 186.9 kg/hm2。不同区域果园比较,土壤氮环境负荷以关中灌区果园较高,达1046.1kg/hm2。果园氮素施用与养分盈余量之间存在极显著的正相关。陕西果园氮素的高量投入给土壤环境带来较大的氮素负荷,这对土壤环境和周围水体造成很大威胁。  相似文献   

6.
土壤微生物生物量氮及其在氮素循环中作用   总被引:11,自引:0,他引:11  
简述了土壤微生物生物量氮的含量及其影响因素,阐述了其在土壤氮素循环中的重要作用,着重讨论了其与可矿化氮、矿质氮、有机氮和固定态铵之间的关系,指出土壤微生物生物量氮与供氮因子间的关系在氮素循环研究中有非常重要的作用,可为调控土壤氮素的供应状况,减少氮素损失,提高氮肥利用率提供科学依据,并提出了需要深入研究的问题。  相似文献   

7.
Field and greenhouse experiments were conducted to assess the nitrogen fixation rates of four cultivars of common bean (Phaseolus vulgaris L.) at different growth stages. The 15N isotope dilution technique was used to quantify biological nitrogen fixation. In the greenhouse, cultivars M4403 and Kallmet accumulated 301 and 189 mg N plant–1, respectively, up to 63 days after planting (DAP) of which 57 and 43% was derived from atmosphere. Under field conditions, cultivars Bayocel and Flor de Mayo RMC accumulated in 77 DAP, 147 and 135 kg N ha–1, respectively, of which approximately one-half was derived from the atmosphere. The rates of N2 fixation determined at different growth stages increased as the plants developed, and reached a maximum during the reproductive stage both under field and greenhouse conditions. Differences in translocation of N were observed between the cultivars tested, particularly under field conditions. Thus, the fixed N harvest index was 93 and 60 for cultivars Flor de Mayo and Bayocel, respectively. In early stages of growth, the total content of ureides in the plants correlated with the N fixation rates. The findings reported in the present paper can be used to build a strategy for enhancing biological N2 fixation in common bean.  相似文献   

8.
Warren  G. P.  Whitehead  D. C. 《Plant and Soil》1988,112(2):155-165
The available N of 27 soils from England and Wales was assessed from the amounts of N taken up over a 6-month period by perennial ryegrass grown in pots under uniform environmental conditions. Relationships between availability and the distribution of soil N amongst various fractions were then examined using multiple regression. The relationship: available soil N (mg kg–1 dry soil)=(Nmin×0.672)+(Ninc×0.840)+(Nmom×0.227)–5.12 was found to account for 91% of the variance in available soil N, where Nmin=mineral N, Ninc=N mineralized on incubation and Nmom=N in macro-organic matter. The N mineralized on incubation appeared to be derived largely from sources other than the macro-organic matter because these two fractions were poorly correlated. When availability was expressed in terms of available organic N as % of soil organic N (Nao) the closest relationship with other soil characteristics was: Nao=[Ninc×(1.395–0.0347×CNmom]+[Nmom×0.1416], where CNmom=CN ratio of the macro-organic matter. This relationship accounted for 81% of the variance in the availability of the soil organic N.The conclusion that the macro-organic matter may contribute substantially to the available N was confirmed by a subsidiary experiment in which the macro-organic fraction was separated from about 20 kg of a grassland soil. The uptake of N by ryegrass was then assessed on two subsamples of this soil, one without the macro-organic matter and the other with this fraction returned: uptake was appreciably increased by the macro-organic matter.  相似文献   

9.
植物氮素营养与病害发生关系研究进展   总被引:1,自引:0,他引:1  
氮素营养不仅影响植物的正常生长发育,还会影响植物的感病性或抗病性。该文主要综述了氮素营养及其代谢对植物病害发展的影响、诱导病原菌侵染的寄主氮营养信号和氮素营养对植物与病原菌互作相关基因表达的影响,尤其是氮素受限(饥饿)对病原菌基因的诱导表达、植物衰老基因和抗病基因的关系、植物衰老过程中防御基因的表达等国际研究的热点领域所取得的成果和进展,并讨论了有待深入研究的问题。  相似文献   

10.
11.
沉积物氮形态与测定方法研究进展   总被引:8,自引:0,他引:8  
刘波  周锋  王国祥  许宽  杜旭  凌芬  夏劲 《生态学报》2011,31(22):6947-6958
长期以来,国内外学者对沉积物中氮进行了大量的研究,在氮生物地球化学循环和生态学效应方面取得了重要进展.然而,现有关于氮赋存形态的研究主要集中在总氮和无机氮方面,还不能深入阐明沉积物氮的生物和生态学机制.分析了沉积物和土壤氮赋存形态划分和测定方法的研究进展,研究表明:沉积物氮的形态划分与测定方法基本上还是借鉴了土壤氮的研究方法;无机态氮的研究多集中在可交换态氮方面,对固定铵的研究相对较少;在可交换态氮提取方法上并没有针对沉积物与土壤的差异进行必要的论证和改进,沉积物中可溶态氮对可交换态氮测定的影响还不明确;有机氮的测定方法基本上是经验方法,目前还无针对有机氮生态学效应的分类及测定方法;连续分级浸提方法从生态学效应的角度对沉积物氮的研究进行了有益的探索,为深入揭示氮的生态学机制提供了新的思路,但是此类方法目前还集中在国内学者的相关研究中.  相似文献   

12.
黄土丘陵区植被恢复对土壤可溶性氮组分的影响   总被引:6,自引:0,他引:6  
为探究黄土丘陵地区人工植被恢复对土壤氮素养分累积与有效性的影响,研究分析了植被恢复15年刺槐、柠条、刺槐侧柏混交、刺槐山桃混交以及荒草地土壤可溶性氮组分含量及其垂直分布特征。结果表明,与耕地相比,植被恢复显著提高了0—30 cm土壤可溶性氮组分含量,这也使0—30 cm土壤可溶性氮组分密度显著增加,可溶性有机氮密度增幅表现为柠条(262.2%)刺槐(232.8%)刺槐山桃混交、刺槐侧柏混交(34.5%)荒草地(-21.5%),硝态氮密度整体表现为柠条刺槐刺槐山桃混交荒草地刺槐侧柏混交,增幅为7.9%—182.8%,铵态氮密度以刺槐山桃混交增幅最大(110.3%),荒草地最小为2.6%。可溶性有机氮、硝态氮占全氮的比例以刺槐最高,分别提升了2.4倍和0.6倍,铵态氮占全氮的比例以刺槐山桃混交最高,提升了1.0倍。可溶性氮组分受微生物量碳氮的影响大于有机质和全氮,微生物量氮与可溶性氮组分的相关性优于微生物量碳,硝态氮对土壤有机质、全氮和微生物量碳氮的变化最为敏感。综上,植被恢复能够提高土壤可溶性氮组分含量、密度及其占全氮比例,增加土壤氮的有效性,以刺槐、柠条提升效果最好。  相似文献   

13.
There is increasing concern over the impact of atmospheric nitrogen (N) deposition on forest ecosystems in the tropical and subtropical areas. In this study, we quantified atmospheric N deposition and revealed current plant and soil N status in 14 forests along a 150 km urban to rural transect in southern China, with an emphasis on examining whether foliar δ15N can be used as an indicator of N saturation. Bulk deposition ranged from 16.2 to 38.2 kg N ha?1 yr?1, while the throughfall covered a larger range of 11.7–65.1 kg N ha?1 yr?1. Foliar N concentration, NO3? leaching to stream, and soil NO3? concentration were low and NO3? production was negligible in some rural forests, indicating that primary production in these forests may be limited by N supply. But all these N variables were enhanced in suburban and urban forests. Across the study transect, throughfall N input was correlated positively with soil nitrification and NO3? leaching to stream, and negatively with pH values in soil and stream water. Foliar δ15N was between ?6.6‰ and 0.7‰, and was negatively correlated with soil NO3? concentration and NO3? leaching to stream across the entire transect, demonstrating that an increased N supply does not necessarily increase forest δ15N values. We proposed several potential mechanism that could contribute to the δ15N pattern, including (1) increased plant uptake of 15N‐depleted soil NO3?, (2) foliage uptake of 15N‐depleted NH4+, (3) increased utilization of soil inorganic N relative to dissolved organic N, and (4) increased fractionation during plant N uptake under higher soil N availability.  相似文献   

14.
Fertilizer N use in Japan has decreased by about 30% from 1960 to 2000, while keeping a little increase in cereal yields. This has resulted in a significant increase in apparent nitrogen use efficiency, in particular for rice. On the other hand, national N Icad on the environment associated with the production and consumption of domestic and imported agricultural products has almost tripled during this period, mainly due to the dramatic increase of imports of food and feedstuffs. The environmental problems, including water and air pollution, caused by the excessive loads of N are serious public concerns and there is an urgent need to minimize N losses from agricultural production. In order to meet the necessity for reducing the environmental impacts by excess N, political and technological measures have been taken at regional and country levels. In recent years, the Japanese government has embarked on a series of policies to encourage transition to an environmentally conscious agriculture. Promoting proper material circulation with reducing fertilizer impact and utilizing biomass and livestock wastes is emphasized in these policies. The effectiveness of environmental assessment and planning for reducing regional and national N Icad has been discussed. Implementation of environmentally friendly technologies and management, both conventional and innovational, have been developed and adopted in Japanese agriculture. The effectiveness of conventional technologies in reducing environmental reactive N has been re-evaluated. Innovative technologies, such as use of controlled availability fertilizers and livestock wastes compost pellets, are being investigated and extended.A comprehensive approach that applies political and technological measures with closer cooperation is necessary to control reactive N in the environment.  相似文献   

15.
Soluble free amino acids, ammonium and nitrate ions as sources of nitrogen for plant growth were measured in soils of a coastal marsh grazed by snow geese in Manitoba, Canada. Amounts of nitrogen, primarily ammonium ions, increased in the latter half of the growing season and over winter, but fell to low values early in the growing season. Free amino acid concentrations relative to ammonium concentrations were highest during the period of rapid plant growth in early summer, especially in soils in the intertidal zone, where the median ratio of amino acid nitrogen to ammonium nitrogen was 0·36 and amino acid concentrations exceeded those of ammonium ions in 24% of samples. Amino acid profiles, which were dominated by alanine, proline and glutamic acid, were similar to goose faecal profiles. In a continuous flow hydroponic experiment conducted in the field, growth of the salt‐marsh grass, Puccinellia phryganodes, on glycine was similar to growth on ammonium ions at an equivalent concentration of nitrogen. When supplies of soil inorganic nitrogen are low, amino acids represent a potentially important source of nitrogen for the re‐growth of plants grazed by geese and amino acid uptake may be as high as 57% that of ammonium ions.  相似文献   

16.
章迅  孙忠林  张全智  王传宽  张著 《生态学报》2017,37(10):3344-3354
氮(N)沉降对森林生态系统的结构与功能具有重要的影响,而森林对到达林地的N沉降量及其分配格局的影响尚不清楚。量化了2012—2013年5—10月两个生长季蒙古栎林和杂木林的林内树干径流和穿透雨及其林外大气降雨总氮(TN)、可溶性氮(DN)和颗粒态氮(PN)沉降通量的季节动态,旨在比较两种林型对N沉降的再分配格局及其季节变化,分析影响其变异的主要因子。结果表明:林外大气降雨、蒙古栎林林内、杂木林林内(树干径流+穿透雨)TN沉降平均值分别为:8.49、15.97、13.39 kg hm~(-2)a~(-1),其中DN分别占其TN的76.35%、82.79%和75.02%,PN分别占其TN的26.35%、17.21%和24.98%,蒙古栎林和杂木林林内穿透雨TN沉降量分别占其TN的95.5%和94.5%。蒙古栎林和杂木林冠层淋溶TN沉降量分别为7.48kg hm~(-2)a~(-1)和4.90 kg hm~(2)a~(-1);其中,前者的DN高于后者,但PN呈相反趋势。两种林型的N沉降组分具有明显的季节动态:沉降量均集中在生长季中期(6—8月),生长季前期和末期较低。林外降雨量分别与林外大气降雨、蒙古栎林和杂木林林内的树干径流和穿透雨中的TN、DN浓度呈显著负指数函数关系(P0.001)。连续降雨天数对蒙古栎林、杂木林林内TN、DN浓度的影响表现为连续降雨2 d以内为富集作用,之后为稀释作用。研究表明林冠对大气氮沉降有显著富集作用,其富集强度及时间动态与森林类型和降雨特征有关,建议氮沉降试验应考虑林冠的富集效应。  相似文献   

17.
In monoculture, certain plant species are able to preferentially utilize different nitrogen (N) forms, both inorganic and organic, including amino acids and peptides, thus forming fundamental niches based on the chemical form of N. Results from field studies, however, are inconsistent: Some showing that coexisting plant species predominantly utilize inorganic N, while others reveal distinct interspecies preferences for different N forms. As a result, the extent to which hypothetical niches are realized in nature remains unclear. Here, we used in situ stable isotope tracer techniques to test the idea, in temperate grassland, that niche partitioning of N based on chemical form is related to plant productivity and the relative availability of organic and inorganic N. We also tested in situ whether grassland plants vary in their ability to compete for, and utilize peptides, which have recently been shown to act as an N source for plants in strongly N-limited ecosystems. We hypothesized that plants would preferentially use NO3-N and NH4+-N over dissolved organic N in high-productivity grassland where inorganic N availability is high. On the other hand, in low-productivity grasslands, where the availability of dissolved inorganic N is low, and soil availability of dissolved organic N is greater, we predicted that plants would preferentially use N from amino acids and peptides, prior to microbial mineralization. Turves from two well-characterized grasslands of contrasting productivity and soil N availability were injected, in situ, with mixtures of 15N-labeled inorganic N (NO3 and NH4+) and 13C15N labeled amino acid (l-alanine) and peptide (l-tri-alanine). In order to measure rapid assimilation of these N forms by soil microbes and plants, the uptake of these substrates was traced within 2.5 hours into the shoots of the most abundant plant species, as well as roots and the soil microbial biomass. We found that, contrary to our hypothesis, the majority of plant species across both grasslands took up most N in the form of NH4+, suggesting that inorganic N is their predominant N source. However, we did find that organic N was a source of N which could be utilized by plant species at both sites, and in the low-productivity grassland, plants were able to capture some tri-alanine-N directly. Although our findings did not support the hypothesis that differences in the availability of inorganic and organic N facilitate resource partitioning in grassland, they do support the emerging view that peptides represent a significant, but until now neglected, component of the terrestrial N cycle.  相似文献   

18.
氮是陆地生态系统生产力的首要限制性养分,利用自然丰度δ15N(15N/14N)可以有效指示生态系统氮循环过程。本试验研究了内蒙古草甸草原土壤与植物系统自然丰度δ15N、土壤净氮矿化潜势的年际变化。结果表明: 2017—2020年,土壤NO3--N含量(9.83~14.79 mg·kg-1)均显著高于NH4+-N含量(3.92~5.00 mg·kg-1);土壤NH4+的δ15N值(13.3‰~18.3‰)显著高于NO3-的δ15N值(3.76‰~6.14‰),土壤NO3-的δ15N值与土壤NO3-含量呈显著负相关;干旱年NH4+的δ15N值相对较高,降水较高或较低年NO3-的δ15N值显著降低。干旱年土壤净氮矿化速率、净氨化速率显著高于湿润年,而土壤硝化速率与年降水量无显著相关性。植物δ15N值与土壤δ15N值无显著相关性,但与植物N含量呈显著负相关;豆科植物与非豆科植物δ15N值、N含量均呈显著正相关,在一定程度上表明豆科植物对非豆科植物的N吸收具有促进作用。研究结果可为草原土壤-植物系统氮循环过程及其对降水变化的响应提供数据支撑。  相似文献   

19.
Nitrogen-use efficiency in six perennial grasses from contrasting habitats   总被引:6,自引:0,他引:6  
1. We studied the nitrogen-use efficiency (NUE) in six perennial grasses adapted to a wide range of nutrient availability. The glasshouse experiment was carried out in pots containing nutrient solution, with two fertility treatments. Nitrogen-use efficiency was considered as the product of nitrogen productivity and mean residence time of the nitrogen in the plant (calculated using 15N pulse labelling).
2. The species investigated are characteristic of habitats ranging from very nutrient rich to extremely nutrient poor, in the following order: Lolium perenne, Arrhenatherum elatius, Festuca rubra, Anthoxanthum odoratum, Festuca ovina and Molinia caerulea .
3. Lolium perenne (adapted to nutrient-rich habitats) had higher nitrogen productivity ( A ) than M. caerulea (species adapted to nutrient-poor habitats) but lower than that of F. rubra (from habitats with an intermediate availability of nutrients).
4. In the low fertility treatment, species with the lowest nitrogen-use efficiency had the lowest N productivity and the highest mean nitrogen residence time (MRT); however, although species with the highest nitrogen use efficiency had the highest N productivity they did not have the lowest MRT. In all species the nitrogen-use efficiency decreased with increasing N supply. The two components of the NUE ( A and MRT) are inversely correlated along gradients of nutrient availability, but not at very high levels of nutrient availability.
5. The nitrogen-use efficiency of species at constant levels of nutrient supply tends to increase with increasing nutrient availability in their preferred habitat, according to the Clausman nutrient index, up to a certain nutrient availability and then decreases. The results support the contention that species from nutrient-poor sites are not necessarily adapted by a high nitrogen-use efficiency, but by low nutrient loss rates (high mean residence time of N in the plant).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号