首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water pulses and biogeochemical cycles in arid and semiarid ecosystems   总被引:45,自引:0,他引:45  
The episodic nature of water availability in arid and semiarid ecosystems has significant consequences on belowground carbon and nutrient cycling. Pulsed water events directly control belowground processes through soil wet-dry cycles. Rapid soil microbial response to incident moisture availability often results in almost instantaneous C and N mineralization, followed by shifts in C/N of microbially available substrate, and an offset in the balance between nutrient immobilization and mineralization. Nitrogen inputs from biological soil crusts are also highly sensitive to pulsed rain events, and nitrogen losses, particularly gaseous losses due to denitrification and nitrate leaching, are tightly linked to pulses of water availability. The magnitude of the effect of water pulses on carbon and nutrient pools, however, depends on the distribution of resource availability and soil organisms, both of which are strongly affected by the spatial and temporal heterogeneity of vegetation cover, topographic position and soil texture. The inverse texture hypothesis for net primary production in water-limited ecosystems suggests that coarse-textured soils have higher NPP than fine-textured soils in very arid zones due to reduced evaporative losses, while NPP is greater in fine-textured soils in higher rainfall ecosystems due to increased water-holding capacity. With respect to belowground processes, fine-textured soils tend to have higher water-holding capacity and labile C and N pools than coarse-textured soils, and often show a much greater flush of N mineralization. The result of the interaction of texture and pulsed rainfall events suggests a corollary hypothesis for nutrient turnover in arid and semiarid ecosystems with a linear increase of N mineralization in coarse-textured soils, but a saturating response for fine-textured soils due to the importance of soil C and N pools. Seasonal distribution of water pulses can lead to the accumulation of mineral N in the dry season, decoupling resource supply and microbial and plant demand, and resulting in increased losses via other pathways and reduction in overall soil nutrient pools. The asynchrony of resource availability, particularly nitrogen versus water due to pulsed water events, may be central to understanding the consequences for ecosystem nutrient retention and long-term effects on carbon and nutrient pools. Finally, global change effects due to changes in the nature and size of pulsed water events and increased asynchrony of water availability and growing season will likely have impacts on biogeochemical cycling in water-limited ecosystems.  相似文献   

2.
Soil microbial communities in Chihuahuan Desert grasslands generally experience highly variable spatiotemporal rainfall patterns. Changes in precipitation regimes can affect belowground ecosystem processes such as decomposition and nutrient cycling by altering soil microbial community structure and function. The objective of this study was to determine if increased seasonal precipitation frequency and magnitude over a 7‐year period would generate a persistent shift in microbial community characteristics and soil nutrient availability. We supplemented natural rainfall with large events (one/winter and three/summer) to simulate increased precipitation based on climate model predictions for this region. We observed a 2‐year delay in microbial responses to supplemental precipitation treatments. In years 3–5, higher microbial biomass, arbuscular mycorrhizae abundance, and soil enzyme C and P acquisition activities were observed in the supplemental water plots even during extended drought periods. In years 5–7, available soil P was consistently lower in the watered plots compared to control plots. Shifts in soil P corresponded to higher fungal abundances, microbial C utilization activity, and soil pH. This study demonstrated that 25% shifts in seasonal rainfall can significantly influence soil microbial and nutrient properties, which in turn may have long‐term effects on nutrient cycling and plant P uptake in this desert grassland.  相似文献   

3.
In addition to warming temperatures, Arctic ecosystems are responding to climate change with earlier snowmelt and soil thaw. Earlier snowmelt has been examined infrequently in field experiments, and we lack a comprehensive look at belowground responses of the soil biogeochemical system that includes plant roots, decomposers, and soil nutrients. We experimentally advanced the timing of snowmelt in factorial combination with an open‐top chamber warming treatment over a 3‐year period and evaluated the responses of decomposers and nutrient cycling processes. We tested two alternative hypotheses: (a) Early snowmelt and warming advance the timing of root growth and nutrient uptake, altering the timing of microbial and invertebrate activity and key nutrient cycling events; and (b) loss of insulating snow cover damages plants, leading to reductions in root growth and altered biological activity. During the 3 years of our study (2010–2012), we advanced snowmelt by 4, 15, and 10 days, respectively. Despite advancing aboveground plant phenology, particularly in the year with the warmest early‐season temperatures (2012), belowground effects were primarily seen only on the first sampling date of the season or restricted to particular years or soil type. Overall, consistent and substantial responses to early snowmelt were not observed, counter to both of our hypotheses. The data on soil physical conditions, as well interannual comparisons of our results, suggest that this limited response was because of the earlier date of snowmelt that did not coincide with substantially warmer air and soil temperatures as they might in response to a natural climate event. We conclude that the interaction of snowmelt timing with soil temperatures is important to how the ecosystem will respond, but that 1‐ to 2‐week changes in timing of snowmelt alone are not enough to drive season‐long changes in soil microbial and nutrient cycling processes.  相似文献   

4.
林婉奇  薛立 《生态学报》2020,40(12):4188-4197
土壤微生物是有机物分解和养分循环的主要介质,因此在维持土壤的功能多样性和持续性方面发挥着关键作用。气候变化驱动因素会影响土壤微生物的生理活动,引起其群落结构和功能多样性的改变,并对生物地球化学循环和气候―生态系统反馈产生连锁效应,其中氮沉降和降水是全球气候变化的研究热点。土壤氮(N)的有效性有可能通过改变微生物的群落组成以调节微生物对降水变化的响应,但目前关于N沉降和降水及其交互作用对土壤微生物群落功能多样性的影响机制仍不清楚。为了准确预测未来气候条件下生态系统的功能状况,需要更好地了解土壤微生物对环境变化的响应。基于BIOLOG技术综述了氮沉降和降水变化及其交互作用对土壤微生物功能多样性影响的相关研究进展,可以为进一步研究全球气候变化背景下地下生态学的发展提供参考。另外,分析阐述了当前工作中存在的一些主要瓶颈,并对未来的研究热点进行了探讨和展望。  相似文献   

5.
干旱半干旱区不同环境因素对土壤呼吸影响研究进展   总被引:10,自引:0,他引:10  
王新源  李玉霖  赵学勇  毛伟  崔夺  曲浩  连杰  罗永清 《生态学报》2012,32(15):4890-4901
土壤呼吸是全球陆地生态系统碳循环的重要环节,也是全球气候变化的关键生态过程。阐明和探讨影响土壤呼吸的各类环境因素,对准确评估陆地生态系统碳收支具有重要意义。干旱半干旱区是陆地生态系统的重要组成部分,研究该区域影响土壤呼吸的环境因素有助于深刻了解干旱半干旱区土壤碳循环过程。就土壤温度、土壤水分、降水、土壤有机质等非生物因子及植被类型、地上、地下生物量、土壤凋落物等生物因子两个方面对土壤呼吸的影响进行了综述。以干旱半干旱区的研究进展为主要论述对象,在上述因素中重点阐述了土壤温度、水分及其耦合作用下土壤呼吸的响应,并就土壤呼吸的Q10值及各影响因素间的交互作用进行归纳总结。在此基础上,说明了土壤温度和水分是影响干旱半干旱区土壤呼吸的主要因素。为了更准确的估算干旱半干旱区土壤呼吸速率,综合分析多种因子的交互影响,提出目前土壤呼吸研究存在的问题和今后重点关注的方向:1)不同尺度下干旱半干旱区土壤呼吸的研究;2)荒漠生态系统土壤呼吸研究;3)非生长季土壤呼吸研究;4)多因素协同作用土壤呼吸模型建立;5)测量方法的改进与完善。  相似文献   

6.
Changing precipitation regimes could have profound influences on carbon (C) cycle in the biosphere. However, how soil C release from terrestrial ecosystems responds to changing seasonal distribution of precipitation remains unclear. A field experiment was conducted for 4 years (2013–2016) to examine the effects of altered precipitation distributions in the growing season on soil respiration in a temperate steppe in the Mongolian Plateau. Over the 4 years, both advanced and delayed precipitation peaks suppressed soil respiration, and the reductions mainly occurred in August. The decreased soil respiration could be primarily attributable to water stress and subsequently limited plant growth (community cover and belowground net primary productivity) and soil microbial activities in the middle growing season, suggesting that precipitation amount in the middle growing season is more important than that in the early, late, or whole growing seasons in regulating soil C release in grasslands. The observations of the additive effects of advanced and delayed precipitation peaks indicate semiarid grasslands will release less C through soil respiratory processes under the projected seasonal redistribution of precipitation in the future. Our findings highlight the potential role of intra‐annual redistribution of precipitation in regulating ecosystem C cycling in arid and semiarid regions.  相似文献   

7.
Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above‐ and belowground linkages that regulate soil organic carbon dynamics and C‐balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top‐predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum‐polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above‐ and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands  相似文献   

8.
The impact of climate change on the soil microbiome potentially alters the biogeochemical cycle of terrestrial ecosystems. In semi‐arid environments, water availability is a major constraint on biogeochemical cycles due to the combination of high summer temperatures and low rainfall. Here, we explored how 10 years of irrigation of a water‐limited pine forest in the central European Alps altered the soil microbiome and associated ecosystem functioning. A decade of irrigation stimulated tree growth, resulting in higher crown cover, larger yearly increments of tree biomass, increased litter fall and greater root biomass. Greater amounts of plant‐derived inputs associated with increased primary production in the irrigated forest stands stimulated soil microbial activity coupled with pronounced shifts in the microbiome from largely oligotrophic to more copiotrophic lifestyles. Microbial groups benefitting from increased resource availabilities (litter, rhizodeposits) thrived under irrigation, leading to enhanced soil organic matter mineralization and carbon respired from irrigated soils. This unique long‐term study provides new insights into the impact of precipitation changes on the soil microbiome and associated ecosystem functioning in a water‐limited pine forest ecosystem and improves our understanding of the persistency of long‐term soil carbon stocks in a changing climate.  相似文献   

9.
Herbivory is an important modulator of plant biodiversity and productivity in grasslands, but our understanding of herbivore‐induced changes on below‐ground processes and communities is limited. Using a long‐term (17 years) experimental site, we evaluated impacts of rabbit and invertebrate grazers on some soil functions involved in carbon cycling, microbial diversity, structure and functional composition. Both rabbit and invertebrate grazing impacted soil functions and microbial community structure. All functional community measures (functions, biogeochemical cycling genes, network association between different taxa) were more strongly affected by invertebrate grazers than rabbits. Furthermore, our results suggest that exclusion of invertebrate grazers decreases both microbial biomass and abundance of genes associated with key biogeochemical cycles, and could thus have long‐term consequences for ecosystem functions. The mechanism behind these impacts are likely to be driven by both direct effects of grazing altering the pattern of nutrient inputs and by indirect effects through changes in plant species composition. However, we could not entirely discount that the pesticide used to exclude invertebrates may have affected some microbial community measures. Nevertheless, our work illustrates that human activity that affects grazing intensity may affect ecosystem functioning and sustainability, as regulated by multi‐trophic interactions between above‐ and below‐ground communities.  相似文献   

10.
Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO2 concentrations ([CO2]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO2], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO2] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate‐driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate‐driven changes in streamflow are likely to reduce abundance of dominant, native, early‐successional tree species, favor herbaceous species and both drought‐tolerant and late‐successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate‐driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian ecosystems to allow rapid detection and response to undesirable ecological change.  相似文献   

11.
The biogeochemical properties of soils drive ecosystem function and vegetation dynamics, and hence soil restoration after mining should aim to reinstate the soil properties and hydrological dynamics of remnant ecosystems. The aim of this study is to assess soil structure in two vegetation types in an arid ecosystem, and to understand how these soil properties compare to a reconstructed soil profile after mining. In an arid ecosystem in southeast Australia, soil samples were collected at five depths (to 105 cm) from remnant woodland and shrubland sites, and sites either disturbed or totally reconstructed after mining. We assessed soil physico‐chemical properties and microbial activity. Soils in the remnant arid ecosystem had coarse‐textured topsoils that overlay clay horizons, which allows water to infiltrate and avoid evaporation, but also slows drainage to deeper horizons. Conversely, reconstructed soils had high sand content at subsoil horizons and high bulk density and compaction at surface layers (0–20 cm). Reconstructed soils had topsoils with higher pH and electrical conductivity. The reconstructed soils did not show increased microbial activity with time since restoration. Overall, the reconstructed soil horizons were not organized in a way that allowed rainfall infiltration and water storage, as is imperative to arid‐zone ecosystem function. Future restoration efforts in arid ecosystems should focus on increasing sand content of soils near the surface, to reduce evaporative water loss and improve soil quality and plant health.  相似文献   

12.
Biological soil crusts (biocrusts) are common and ecologically important members of dryland ecosystems worldwide, where they stabilize soil surfaces and contribute newly fixed C and N to soils. To test the impacts of predicted climate change scenarios on biocrusts in a dryland ecosystem, the effects of a 2–3 °C increase in soil temperature and an increased frequency of smaller summer precipitation events were examined in a large, replicated field study conducted in the cold desert of the Colorado Plateau, USA. Surface soil biomass (DNA concentration), photosynthetically active cyanobacterial biomass (chlorophyll a concentration), cyanobacterial abundance (quantitative PCR assay), and bacterial community composition (16S rRNA gene sequencing) were monitored seasonally over 2 years. Soil microbial biomass and bacterial community composition were highly stratified between the 0–2 cm depth biocrusts and 5–10 cm depth soil beneath the biocrusts. The increase in temperature did not have a detectable effect on any of the measured parameters over 2 years. However, after the second summer of altered summer precipitation pattern, significant declines occurred in the surface soil biomass (avg. DNA concentration declined 38%), photosynthetic cyanobacterial biomass (avg. chlorophyll a concentration declined 78%), cyanobacterial abundance (avg. gene copies g?1 soil declined 95%), and proportion of Cyanobacteria in the biocrust bacterial community (avg. representation in sequence libraries declined 85%). Biocrusts are important contributors to soil stability, soil C and N stores, and plant performance, and the loss or reduction of biocrusts under an altered precipitation pattern associated with climate change could contribute significantly to lower soil fertility and increased erosion and dust production in dryland ecosystems at a regional scale.  相似文献   

13.
Climate change can profoundly impact carbon (C) cycling of terrestrial ecosystems. A field experiment was conducted to examine responses of total soil and microbial respiration, and microbial biomass to experimental warming and increased precipitation in a semiarid temperate steppe in northern China since April 2005. We measured soil respiration twice a month over the growing seasons, soil microbial biomass C (MBC) and N (MBN), microbial respiration (MR) once a year in the middle growing season from 2005 to 2007. The results showed that interannual variations in soil respiration, MR, and microbial biomass were positively related to interannual fluctuations in precipitation. Laboratory incubation with a soil moisture gradient revealed a constraint of the temperature responses of MR by low soil moisture contents. Across the 3 years, experimental warming decreased soil moisture, and consequently caused significant reductions in total and microbial respiration, and microbial biomass, suggesting stronger negatively indirect effects through warming‐induced water stress than the positively direct effects of elevated temperature. Increased evapotranspiration under experimental warming could have reduced soil water availability below a stress threshold, thus leading to suppression of plant growth, root and microbial activities. Increased precipitation significantly stimulated total soil and microbial respiration and all other microbial parameters and the positive precipitation effects increased over time. Our results suggest that soil water availability is more important than temperature in regulating soil and microbial respiratory processes, microbial biomass and their responses to climate change in the semiarid temperate steppe. Experimental warming caused greater reductions in soil respiration than in gross ecosystem productivity (GEP). In contrast, increased precipitation stimulated GEP more than soil respiration. Our observations suggest that climate warming may cause net C losses, whereas increased precipitation may lead to net C gains in the semiarid temperate steppe. Our findings highlight that unless there is concurrent increase in precipitation, the temperate steppe in the arid and semiarid regions of northern China may act as a net C source under climate warming.  相似文献   

14.
A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation.  相似文献   

15.
Fluctuations in mean annual precipitation (MAP) will strongly influence the ecology of dryland ecosystems in the future, yet, because individual precipitation events drive growth and resource availability for many dryland organisms, changes in intra-annual precipitation may disproportionately influence future dryland processes. This work examines the hypothesis that intra-annual precipitation changes will drive dryland productivity to a greater extent than changes to MAP. To test this hypothesis, we created a physiology-based model to predict the effects of precipitation change on a widespread biocrust moss that regulates soil structure, water retention, and nutrient cycling in drylands. First, we used the model to examine moss productivity over the next 100 years driven by alterations in MAP by ±10, 20 and 30 %, and changes in intra-annual precipitation (event size and frequency). Productivity increased as a function of MAP, but differed among simulations where intra-annual precipitation was manipulated under constant MAP. Supporting our hypothesis, this demonstrates that, even if MAP does not change, changes in the features of individual precipitation events can strongly influence long-term performance. Second, we used the model to examine 100-year productivity based on projected dryland precipitation from published global and regional models. These simulations predicted 25–63 % reductions in productivity and increased moss mortality rates, declines that will likely alter water and nutrient cycling in dryland ecosystems. Intra-annual precipitation in model-based simulations was a stronger predictor of productivity compared to MAP, further supporting our hypothesis, and illustrating that intra-annual precipitation patterns may dominate dryland responses to altered precipitation in a future climate.  相似文献   

16.
The effects of short‐term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought‐induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant–microbial interactions and a greater incidence of certain soil‐borne diseases.  相似文献   

17.
Human-driven changes in nitrogen (N) and phosphorus (P) inputs are modifying biogeochemical cycles and the trophic state of many habitats worldwide. These alterations are predicted to continue to increase, with the potential for a wide range of impacts on invertebrates, key players in ecosystem-level processes. Here, we present a meta-analysis of 1679 cases from 207 studies reporting the effects of N, P, and combined N + P enrichment on the abundance, biomass, and richness of aquatic and terrestrial invertebrates. Nitrogen and phosphorus additions decreased invertebrate abundance in terrestrial and aquatic ecosystems, with stronger impacts under combined N + P additions. Likewise, N and N + P additions had stronger negative impacts on the abundance of tropical than temperate invertebrates. Overall, the effects of nutrient enrichment did not differ significantly among major invertebrate taxonomic groups, suggesting that changes in biogeochemical cycles are a pervasive threat to invertebrate populations across ecosystems. The effects of N and P additions differed significantly among invertebrate trophic groups but N + P addition had a consistent negative effect on invertebrates. Nutrient additions had weaker or inconclusive impacts on invertebrate biomass and richness, possibly due to the low number of case studies for these community responses. Our findings suggest that N and P enrichment affect invertebrate community structure mainly by decreasing invertebrate abundance, and these effects are dependent on the habitat and trophic identity of the invertebrates. These results highlight the important effects of human-driven nutrient enrichment on ecological systems and suggest a potential driver for the global invertebrate decline documented in recent years.  相似文献   

18.
土壤微生物对气候变暖和大气N沉降的响应   总被引:10,自引:0,他引:10       下载免费PDF全文
气候变暖和大气N沉降是近一、二十年来人们非常关注的全球变化现象,它们所带来的一系列生态问题已成为全球变化研究的重要议题。它们不仅影响地上植被生长和群落组成,还直接或间接地影响土壤微生物过程,而土壤微生物对此做出的响应正是生态系统反馈过程中非常重要的环节。该文分别从气候变化对土壤微生物的影响(土壤微生物量、微生物活动和微生物群落结构)和土壤微生物对气候变化的响应(凋落物分解、养分利用与循环以及养分的固持与流失)两个角度,综述近期土壤微生物对气候变暖和大气N沉降响应与适应的研究进展。气候变暖和大气N沉降对土壤微生物的影响更多地反映在微生物群落的结构和功能上,而土壤微生物量、微生物活动和群落结构的变化又会通过改变凋落物分解、养分利用和C、N循环等重要的土壤生态系统功能和过程做出响应,形成正向或负向反馈,加强或削弱气候变化给整个陆地生态系统带来的影响。然而,到目前为止土壤微生物的响应对陆地生态系统产生的最终结果仍是未决的关键性问题。  相似文献   

19.
The importance of herbivore–plant and soil biota–plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta‐analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root‐feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores, whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, and the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked.  相似文献   

20.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号