首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In both reproductive and vegetative plants of Lolium temulentumL., the export of 14C-labelled assimilates from each healthyleaf on the main shoot to terminal meristem, stem, tillers,and roots was measured each time a new leaf was expanded, fora period of 5 to 6 weeks. Some labelled assimilates moved fromeach leaf on the main shoot to every meristem in the same shoot,as well as to the tops and roots of adjacent organically attachedtillers. The terminal meristem of the reproductive shoot, which includedthe developing inflorescence, received 70–80 per centof the carbon assimilated by the emerged portion of the growingleaf, 15–25 per cent of the carbon assimilated by thetwo youngest expanded leaves, and 5–10 per cent of thatfrom each of the older leaves. A similar pattern of carbon supplyto the terminal meristem was found in vegetative shoots, exceptthat older leaves on young vegetative shoots supplied even lessof their carbon to the terminal meristem. The general conclusionis that developing leaves at the tip of the shoot receive aboutthe same proportion of carbon from each leaf as does a developinginflorescence. Young expanded leaves provided most labelled assimilates forstem growth; during both reproductive and vegetative growth,expanded leaves increased their export of labelled carbon tostem, and exported less of their 14C to roots and sometimesto tillers. In these reproductive and vegetative shoots, grown in a constantexternal environment, the major changes in the pattern of distributionof labelled assimilates appeared to be the result of increasedmeristematic activity in stem internodes; the development ofan inflorescence had no obvious direct effect on the carboneconomy of shoots.  相似文献   

2.
During vegetative growth in controlled environments, the patternof distribution of 14C-labelled assimilates to shoot and root,and to the meristems of the shoot, was measured in red and whiteclover plants either wholly dependent on N2 fixation in rootnodules or receiving abundant nitrate nitrogen but lacking nodules. In experiments where single leaves on the primary shoot wereexposed to 14CO2, nodulated plants of both clovers generallyexported more of their labelled assimilates to root (+nodules),than equivalent plants utilizing nitrate nitrogen, and thiswas offset by reduced export to branches (red clover) or stolons(white clover). The intensity of these effects varied with experiment.The export of labelled assimilate to growing leaves at the terminalmeristem of the donor shoot was not influenced by source ofnitrogen. Internode elongation in the donor shoot utilized nolabelled assimilate. Whole plants of white clover exposed to 14CO2 on seven occasionsover 32 days exhibited the same effect on export to root (+nodules),which increased slightly in intensity with increasing plantage. Nodulated plants had larger root: shoot ratios than theirequivalents utilizing nitrate nitrogen. Trifolium repens, Trifolium pratense, red clover, white clover, nitrogen fixation, nitrate utilization, assimilate partitioning  相似文献   

3.
Assimilate Distribution in Poa annua L.   总被引:1,自引:0,他引:1  
The carbon economy of a flowering tiller of Poa annua L. hasbeen examined over the period from inflorescence emergence tograin shedding. The total import of 14C by the inflorescencereached a maximum at late grain filling but the relative importof assimilate was greatest 14 days after its appearance andrepresented 20–25 per cent of that assimilated by theinflorescence itself. The inflorescence continued to be an importantassimilatory organ after grain ripening when it exported morethan 50 per cent of its assimilate to the stem, roots and othertillers. The patterns of distribution of assimilates from the youngestuppermost and the oldest green leaf of the reproductive tillerwere largely determined by the stage of development of the inflorescence.The youngest leaf mainly supported the inflorescence up to theend of the grain-filling stage but then supplied assimilatesbasally to the roots and adjacent tillers. The oldest greenleaf supported the growth of the stem and the inflorescenceup to anthesis but after this supplied assimilates mainly tothe roots and tillers. Removal of grains or the entire inflorescence only 1 h beforesupplying 14CO2 greatly reduced the rate of fixation of 14CO2and the export of radiocarbon, as well as changing the patternof distribution of assimilates within the plant. The significanceof these results is discussed and comparisons made with cerealsand perennial grasses.  相似文献   

4.
WOLEDGE  J. 《Annals of botany》1979,44(2):197-207
The photosynthetic capacity of newly expanded leaves of vernalizedor non-vernalized plants of S24 perennial ryegrass (Lolium perenneL.), grown in long or short photoperiods, was measured in twoexperiments. In the first, leaves were protected from shadingduring development, while in the second, the natural shade ofneighbouring tillers in a sward was allowed. In the first experiment there was little effect of vernalization,day length or flowering, and leaves in all treatments had photosyntheticrates at 250 W m–2 of between 28 and 32 mg CO2 dm–2h–1.In the second experiment the photosynthetic rate of successiveleaves fell as sward leaf area increased. This downward trendwas reversed, however, in flowering tillers in the vernalizedlong-day treatment, while in the other treatments, which didnot flower, photosynthetic capacity continued to fall. It isconcluded that the leaves of reproductive tillers have highphotosynthetic capacities because stem extension carries themto the top of the canopy where they are well illuminated duringexpansion. Lolium perenneL, ryegrass, photosynthetic capacity, flowering, shading, vernalization  相似文献   

5.
Green pepper (Capsicum annuum cv. Bell Boy) plants were exposedin chambers to low (2%) oxygen and controlled carbon dioxideconcentrations. Vegetative and fruiting plants showed short-termincreases in net photosynthesis in low oxygen or elevated carbondioxide (up to 900 µl CO2 l–1). Photosynthesis ofyoung vegetative plants increased in low oxygen in the short-termbut there was no long-term benefit. Low oxygen enhancement ofphotosynthesis declined with time and after 10 d, leaf areaand root dry weight were less than in plants grown in normalair. Labelled assimilates were translocated from leaves to otherregions at similar rates in low oxygen and normal air. Low oxygenreduced respiratory losses from leaves and reduced the proportionof soluble carbohydrate converted to polysaccharide in all plantparts. Thus, low-oxygen environments decrease the utilisationof assimilates which then may lead to inhibition of photosynthesis. Capsicum annuum, photosynthesis, photorespiration, translocation, utilization of assimilates  相似文献   

6.
The influence of infection with Septoria nodorum of leaves belowthe flag leaf on the translocation of 14C-labelled assimilatesin wheat was followed. In the vegetative phase export of assimilatesfrom a single infected leaf was reduced, but export from a healthyleaf on a heavily infected plant was increased. During the reproductivephase export from leaves was not affected by disease. Heavyleaf infection had little effect on the patterns of distributionof export especially during reproductive growth when only changesin the proportion of assimilates in leaf sheaths and tillerstumps were found. Distribution of export from a healthy flagleaf on an otherwise heavily infected plant was unaltered. Duringvegetative growth changes in the distribution of assimilateswere more marked, the greatest changes occurring when a singleinfected leaf on a healthy plant was exposed to 14CO2.  相似文献   

7.
The distribution of 14C-assimilates was examined in reproductiveplants of Lolium multiflorum Lam. var. Westerwoldicum (cv. Tama)from which all emerged tillers had been removed, leaving themain tiller with two expanding leaves, one of them the flagleaf, and two expanded leaves. Export of 14C from the lowerexpanded leaf was mainly to the tiller in its axil, the steminternode below its node and the roots, whereas the upper expandedleaf supplied predominantly the expanding leaves, the ear, steminternodes, roots and the tiller bud in the axil of the lowerleaf. Defoliation and root-pruning showed that expanding leaveswere able to compete successfully for assimilates, probablythrough the production of substances capable of mobilizing supply.Local application of 1-naphthaleneacetic acid (NAA), gibberellicacid (GA3) and 6-benzylaminopurine (BAP) to small tiller budsshowed that GA3 and BAP promoted bud growth and 14C accumulation,but that addition of NAA reduced these effects.  相似文献   

8.
Autoradiographs were made of plants of Lolium multiflorum Lam.after 14CO2 had been fixed by selected leaves. The results showedthat labelled compounds were not translocated to other tillersbut were moved to the whole root system. This pattern of distributionwas changed when all or some of the tillers on the plant weredefoliated. Where a single undefoliated tiller remained, itinitially supplied the cut tillers with 14C-containing products,thus reintegrating a system of apparently independent tillers.When all the tillers were partially defoliated, labelled compoundswere no longer translocated to the root system. A further experimentsuggested that root reserves were not mobilized for regrowthfollowing defoliation. These results are discussed in termsof the integration of a grass plant in the vegetative state.  相似文献   

9.
PATE  J. S. 《Annals of botany》1966,30(1):93-109
In Pisum arvense, the amides and amino-acids normally suppliedto the shoot in the transpiration stream transfer carbon toprotein largely throught the amino-acids, aspartic acid (+asparagine),glutarnic acid (+glutamine), threonine, lysine, arginine, andproline. Carbon from carbon dioxide enters the protein of photosynthesizingtissues through an essentially complementary set of amino-acidsincluding glycine, alanine, serine, valine, and the aromaticamino-acids tyrosine, phenylalnine, and histidine. Young tissuesof the shoot synthesize certain amino-acids de novo by metabolismof sugars supplied from photosynthesizing leaves. Each mature leaf on a shoot contributes carbon to current synthesisof protein at the shoot apex. Sucrose accounts for more than90 per cent of the labelled carbon leaving any age of leaf whichhas been fed with 14CO2. Upper leaves supply labelled assimilatesdirectly to the shoot apex, and the radiocarbon from these assimilatesis subsequently incorporated into a wide range of amino-acidunits of protein. The majority of the labelled assimilates exportedfrom a lower leaf move downwards to the root and nodules and,in consequence, the amino-acids and amides associated with rootmetabolism are strongly represented among the compounds eventuallylabelled in the apical region of the shoot.  相似文献   

10.
A quantitative study was made of the effect of infection bya facultative parasite, Alternaria solani, on the translocationof 14C-labelled assimilates in the tomato plant. In a plantwith a single diseased leaf, this leaf retained a greater proportionof its assimilated radiocarbon during the early stages of infection.The export of assimilates from a diseased leaf when diseasedevelopment was purposely retarded and was found to be similarto that from a control leaf. At a late stage in the disease,where there was extensive chlorosis and necrosis, export fromdiseased leaves was generally increased and the distributionof the translocated assimilates was altered. Non-infected leaveswere at first unaffected by the disease, but later there wasincreased contribution to the actively growing regions of theplant. In some cases there was a slight increase in total exportfrom healthy leaves but, more generally, a change in the distributionof assimilates occurred. In particular, there was a consistentincrease in activity in the roots. This response to infectionwas not related to the amount of disease present. No evidencewas obtained for an increased import into infected leaves fromnon-infected leaves at any stage of the disease.  相似文献   

11.
SIVAPALAN  K. 《Annals of botany》1975,39(2):137-140
The fixation of 14CO2 by mature brown stems of the tea plantwas studied by supplying 14CO2 to selected stems of pruned andintact plants for 24 h under field conditions. Utilization of14C assimilates for the production of new shoots was also examined.The photosynthetic nature of the fixation of 14CO2 is demonstrated.The efficiency of this fixation was very low compared with thattaking place in leaves. The movement of labelled assimilatesfrom stem bark to the roots was inappreciable, whereas newlyemerged shoots on the pruned frame drew labelled assimilatesfrom stem bark.  相似文献   

12.
To better understand source-sink interactions, this work focusedon the influence of fruit number on leaf area and photosyntheticactivity in cantaloupe. To this end, flowers were removed over2 years on two Charentais cultivars to obtain single-fruit plantsand plants with an unrestricted fruit load (which set two tofive fruits and constituted control plants). At the whole plantscale, net photosynthesis was reduced by about 30% under highfruit load. At the leaf scale, a submodel of stomatal conductancewas fitted to the data and was included in a rectangular hyperbolamodel of leaf photosynthesis. Maximum leaf net photosynthesisaveraged 14.83 µmol CO2m-2s-1at 1000 µmol quantam-2s-1. Light use efficiency was not affected by fruit loadand equalled 0.040 mol CO2mol-1quanta. Leaf area of plants withunrestricted fruit load decreased after 24 days from pollination,while the leaf area of single-fruit plants was still increasing.The decrease was due to production of fewer new leaves per day,whereas the number of senescent leaves and the size of individualleaves were not affected by the treatment. Under high fruitload, cultivar Galoubet developed a larger projected leaf areathan cultivar Talma. Thus it is concluded that: (1) large cantaloupefruits may divert a large amount of assimilates away from, andgrow at the expense of, the canopy; and (2) photosynthesis ofthe canopy was lowered because leaf area was reduced whereasphotosynthetic rate of leaves was not altered.Copyright 1998Annals of Botany Company. Cucumis meloL., fruit load, source-sink interactions, leaf photosynthesis, canopy photosynthesis, leaf area, SLA, source strength.  相似文献   

13.
FORD  ELSIE M. 《Annals of botany》1967,31(1):113-119
One-year rooted shoots of M.VII apple rootstock were grown fora single season by spraying their roots continuously with nutrientsolutions containing either < 3 ppmMg(Mg(0)) or 45 ppm(Mg(0))to give, respectively, potentially very deficient or healthyplants. The new shoots of half the plants in each of these treatmentswere dipped periodically in a 2 per cent solution of MgSO4.7H2O plus ‘wetter’. Mg(0) undipped plants developed severe symptoms of Mg deficiency,growth was poor, and the shoot/root dry-weight increment ratiowas high; none of these characteristics was found in Mg(0) dippedplants, whose growth was not appreciably less than that of Mg(2)undipped controls. There was little translocation of Mg from leaves to roots: theconcentration of Mg in roots of Mg(0) dipped plants was as lowas that of the undipped. The large accumulation of Mn and, toa less extent, of Fe in Mg(0) dipped roots was not apparentlydetrimental to growth. Growth of Mg(2) dipped plants was similar to that of the undipped. Dipping had little effect on the chemical composition of leaves,except to raise the concentration of Mg.  相似文献   

14.
In seedling plants of Lolium multiflorum Lam. the tillers weredefoliated but the main shoot was left intact. Radiocarbon as14CO2 was supplied to this shoot at different times followingtiller defoliation and the pattern of distribution of labelledassimilates was determined quantitatively. It was found thata greater proportion (approximately 10–20 per cent) ofexported assimilate was translocated to the cut tillers butalthough the proportion supplied to the root system was lessthe total radiocarbon incorporated by the roots was unchanged.This was brought about by a large increase in the export ofradiocarbon fixed by the intact shoot—up to 100 per centfollowing one treatment. These alterations in the organizationof the defoliated plant lead to a greater efficiency in thecarbon economy and are discussed in relation to the stress imposedby defoliation.  相似文献   

15.
Microswards of white clover (Trifolium repens L.) were grownin controlled environments at 10/7, 18/13 and 26/21 °C day/nighttemperatures. The vertical distribution of leaves of differentages and their rates of 14CO2-uptake in situ were studied. Extending petioles carried the laminae of young leaves throughthe existing foliage. A final position was reached within 1/4to 1/3 of the time between unfolding and death. Newly unfoldedleaves had higher rates of 14CO2-uptake per leaf area than olderones at the same height in the canopy. At higher temperatures,the decrease with age was faster. However, the light-photosynthesisresponse of leaves which were removed from different heightsin the canopy varied much less with leaf age than did the ratesof 14CO2-uptake in situ. The comparison of the rates of 14CO2-uptake in situ with thelight-photosynthesis response curves suggests that young leavesreceive more light than older ones at the same height in thecanopy. This would imply that young white clover leaves havethe ability to reach canopy positions having a favourable lightenvironment. This ability may improve the chances of survivalof white clover in competition with other species. Trifolium repens L., white clover, photosynthesis, canopy, leaf age, 14CO2-uptake, ecotypes, temperature  相似文献   

16.
The distribution of 14C-labelled assimilates in dwarf beansinfected on one unifoliate with Xanthomonas phaseoli or systemicallyinfected with the pathogen was compared with the distributionin plants subjected to water stress. Unifoliates on systemically-infectedand water-stressed plants retained a much greater proportionof assimilated 14CO2 than equivalent leaves on healthy plants,but unifoliates directly inoculated with X. phaseoli (localinfection) retained only a slightly larger proportion than controlplants. Local infection had little influence on the distribution ofexported radiocarbon but systemic infection produced markedeffects and there were similar changes in water-stressed plants.These changes seem to be related mainly to changes in growthpatterns, particularly to the reduced development of trifoliateleaves. The main causes of the altered assimilate distributionappear to be modified source-sink relationships, but the natureof the vascular system of dwarf bean and interference with vascularfunction by X. phaseoli seem to be more significant factorsthan in other diseases where assimilate distribution has beenstudied.  相似文献   

17.
The significance of nickel (Ni), which is essential for ureaseactivity, for growth and nitrogen (N) metabolism ofBrassicanapusgrown in nutrient solution with either NH4NO3or urea assole N source was investigated. Although Ni contents were below25 µg kg-1d. wt, growth of plants relying on NH4NO3wasnot affected by the Ni status. However, supplementing the growthmedium with 0.04 µMNi enhanced dry matter production ofurea-grown plants significantly. Urease activity was significantlyreduced in leaves and roots of plants grown without supplementaryNi irrespective of N source. Plants grown with urea withoutadditional Ni accumulated large amounts of urea and had loweramino acid contents indicating impaired usage of the N supplied,while those grown with NH4NO3under Ni-deprived conditions accumulatedendogenous urea in their older leaves. It is suggested thatNi may not be strictly essential for plants receiving mineralN, or that the critical level is well below 25 µg kg-1d.wt. These results confirm that Ni is required for urease activityand thus for growth of plants on urea-based media, as well asfor recycling endogenous urea.Copyright 1999 Annals of BotanyCompany. Brassica napusvar.annua, amino acids, N nutrition, nickel, spring rape, urea, urease activity.  相似文献   

18.
Yamashita, T. 1987. Modulated degradation of ribulose ftisphosphatecarboxylase in leaves on top-pruned shoots of the mulberry tree(Morus alba L.).—J. exp. Bot. 38: 1957–1964. The effects of pruning shoot tops on the synthesis and degradationof ribulose 1,5–Wsphosphate carboxylase (RuBPCase) inleaves on remaining shoots were investigated in mulberry trees.Leucine labelled with 14C was fed to leaf discs from field-grownmulberry trees and 14C incorporation into RuBPCase was examined.Proportion of 14C in RuBPCase to leucine–14C absorbedby leaf discs was remarkably lowered by top-pruning, thoughoccasionally a slight increase was observed soon after pruning.Yet RuBPCase content in leaves on top-pruned shoots became progressivelyhigher than that in leaves on intact shoots. Changes in 14Cin Ru1BPCase in leaves of mulberry saplings previously fed 14CO2were followed. Following 14CO2 feeding, the attainment of themaximal level of 14C in RuBPCase was retarded by top-pruning.The highest level of 14C in RuBPCase was maintained in leaveson top-pruned shoots but decreased in leaves on intact shoots.Specific radioactivity in RuBPCase continued to increase inleaves on top-pruned shoots even after attaining a maximum levelin the control leaves. These facts suggest that the increasein RuBPCase by top-pruning results from a cessation of its degradationfor the remobilization of nitrogen for newly developing leaveson shoot tops. Key words: RuBP carboxylase, shoot pruning, mulberry (Morus alba)  相似文献   

19.
Plants of the biennial Arctium tomentosum were grown from seedto seed-set in an open field under three different treatments:control plants receiving full light intensity, plants with aleaf area reduced by 45 per cent, and shaded plants receivingonly 20 per cent of natural illumination. At various stagesof development the youngest fully expanded leaf of one plantin each treatment was exposed to 14CO2 for half an hour. Subsequentdistribution of labelled assimilates in various plant partswas determined after eight hours. In the first year, the mostdominant sink was the tap root irrespective of variation inassimilate supply. During the production of new vegetative growthin the second season, a larger amount of radioactive photosynthatewas recovered from above ground parts, especially during formationof lateral branches. Seed filling consumed 80–90 per centof labelled carbon exported from the exposed leaf. In the secondyear, the most pronounced difference between treatments wasin the degree of apical dominance, being highest in shaded plantsand lowest in the plants with cut leaves. Results from 14C experimentsagreed fairly well with a ‘partitioning coefficient’derived from a growth analysis of plants grown independentlyunder the same experimental conditions. Reasons for discrepanciesbetween the 14C results and the partitioning coefficient arediscussed. Arctium tomentosum, burdock, variation in assimilate supply, assimilate distribution, 14CO2, labelling, growth analysis  相似文献   

20.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号