首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 177 毫秒
1.
Experiments were made to determine the extent of reciprocaltransfer of products (derived from the assimilation of 14CO2)between various parts of the young vegetative grass plant (Loliummultiflorum Lam.). When individual laminae on different tillerswere supplied with 14CO2, 47–64 per cent of the fixedcarbon was exported after 24 h. The principal sinks were theroot system and the shoot or tiller to which the fed leaf wasattached. Other tillers also received significant quantitiesof radiocarbon. When whole tillers were supplied with 14CO2the percentage of fixed radiocarbon exported within 24 h rangedfrom 14–31 per cent. Of this, 50–74 per cent wasrecovered from the root system (except in the case of exportfrom the youngest tiller) but exchange of material between tillersalso occurred.A reciprocity diagram is presented and it is concludedthat despite the magnitude of the exchange no tiller showedan over-all net gain or loss. The main shoot and the tillersdiffered in the extent of their carbon exchange and in theirdegree of independence. The oldest daughter tiller of the mainshoot was the most independent and the main shoot most interdependent.  相似文献   

2.
Single plants of white clover (Trifolium repens L.) were grownfrom stolon cuttings rooted in sand. All plants were inoculatedwith Rhizobium trifolii, and for 14 weeks received nutrientsolution containing 0.5 mg N each week, as either ammonium ornitrate. Plants were then leniently defoliated or were leftintact and a 15N-labelled N source was applied at intervalsof 4 d to replace the unlabelled N. Lement defoliation removedfully expanded leaves only; the remaining immature leaves accountedfor 39–44% of the total. At harvests over the following21 d, leaf numbers were counted and dry matter (DM), N contentsand 15N enrichments of individual plant organs were determined. Rates of leaf emergence and expansion were accelerated in defoliatedplants; numbers of young leaves were similar in defoliated andintact plants. Total DM and N content were less in defoliatedthan intact plants and were not affected by form of N supplied.DM of young leaves, growing points and stolons and N contentof young leaves were, however, greater when ammonium ratherthan nitrate N was supplied. Rates of increase in the contentof plant total N were 8.2 ± 1.36 mg N d-1 and 10.2±1.82 mg N d-1 in defoliated and intact plants respectively.The increases were predominantly due to N2 fixation, since recoveryof 15N showed that less than 1% of the increment in plant totalN was assimilated mineral N. Nevertheless, the contributionof mineral N to plant total N was 50% more in defoliated thanin intact plants; higher amounts of mineral N were found particularlyin young leaves and growing points. Partitioning of mineralN to nodulated roots increased over time and was greater whenammonium rather than nitrate N was present. White clover, Trifolium repens L. cv. S184, lenient defoliation, N accumulation, N2 fixation  相似文献   

3.
Autoradiographs were made of plants of Lolium multiflorum Lam.after 14CO2 had been fixed by selected leaves. The results showedthat labelled compounds were not translocated to other tillersbut were moved to the whole root system. This pattern of distributionwas changed when all or some of the tillers on the plant weredefoliated. Where a single undefoliated tiller remained, itinitially supplied the cut tillers with 14C-containing products,thus reintegrating a system of apparently independent tillers.When all the tillers were partially defoliated, labelled compoundswere no longer translocated to the root system. A further experimentsuggested that root reserves were not mobilized for regrowthfollowing defoliation. These results are discussed in termsof the integration of a grass plant in the vegetative state.  相似文献   

4.
The youngest fully expanded leaves of single tillers of vegetativeperennial ryegrass plants were exposed to 14CO2. Thereafter,quantitative and fractional analysis of the partitioning, storageand re-mobilization after defoliation of the 14C-labelled assimilatewas sequentially conducted over a 22 d period. In undefoliated plants, most 14C reached its final destinationwithin 5–6 of feeding. Forty per cent of assimilated 14Cwas subsequently lost through respiration, while 13.5, 8.5 and34 per cent remained in roots, stem bases and tops respectively.At least some 14C was distributed to tillers throughout theplant, but secondary tillers subtended by the fed tiller madethe greatest demand on 14C translocated from the fed tiller. A small, but significant portion of 14C was invested into longterm storage in undefoliated plants, four per cent of the totalassimilated still being present in a labile chemical form inroots and stem bases 22 d after feeding. In plants that wereseverely defoliated 4 d after feeding, depletion of reserve14C was observed relative to undefoliated plants. The depletiontook place from stem bases, not roots, and both low and highmolecular weight storage compounds were involved. A portionof the depleted 14C was incorporated into new growth after defoliation. Lolium perenne, perennial ryegrass, assimilate partitioning, storage, re-mobilization, defoliation  相似文献   

5.
M.7 apple rootstocks were used during the peak period of shootextension for comparisons of dry-matter production per unitleaf area between intact plants and others which had been partiallydefoliated. Dry-matter increment per unit leaf area over a 16-dayinterval was some 70 per cent higher in partially defoliatedplants than in controls. 14CO2 was supplied to designated leaves of comparable age andposition. Sample discs were taken from the ‘fed’leaves at intervals up to 9 days from supplying 14CO2. Translocationrates were estimated by comparison with leaves on a third setof plants whose petioles were steamed to prevent translocationimmediately on removal of the 14CO2 feeding chambers. Translocationrates in partially defoliated plants were enhanced some 30 percent compared with controls. It is suggested that features of the plant outside the studiedleaves may have contributed to the overall efficiency of assimilateproduction and utilization. Malus sylvestris L., apple, dry matter production, leaf efficiency, defoliation, translocation, assimilate distribution, sorbitol, sucrose  相似文献   

6.
In two experiments, the functioning and metabolism of nodulesof white clover, following a defoliation which removed abouthalf the shoot tissue, were compared with those of undefoliatedplants. In one experiment, the specific respiration rates of nodulesfrom undefoliated plants varied between 1160 and 1830 µmolCO2 g–1h–1, of which nodule ‘growth and maintenance’accounted for 22 ± 2 per cent, or 27 ± 3.6 percent, according to method of calculation. Defoliation reducedspecific nodule respiration and nodule ‘growth and maintenance’respiration by 60–70 per cent, and rate of N2 fixationby a similar proportion. The original rate of nodule metabolismwas re-established after about 5 d of regrowth; during regrowthnodule respiration was quantitatively related to rate of N2,fixation: 9.1 µmol CO2 µmol–1N2. With the possible exception of nodules examined 24 h after defoliation,the efficiency of energy utilization in nitrogenase functioningin both experiments was the same in defoliated and undefoliatedplants: 2.0±0.1 µmol CO2 µmol–1 C2H4;similarly, there was no change in the efficiency of nitrogenasefunctioning as rate of N2 fixation increased with plant growthfrom 1 to 22 µmol N2 per plant h–1. Exposure of nodulated white clover root systems to a 10 percent acetylene gas mixture resulted in a sharp peak in rateof ethylene production after 1.5–2.5 min; subsequently,rate of ethylene production declined rapidly before stabilisingafter 0.5–1 h at a rate about 50 per cent of that initiallyobserved. Regression of ‘peak’ rate of ethyleneproduction on rate of N2 fixation indicated a value of 2.9 µmolC2H4 µmol–1 N2, for rates of N2 fixation between1 and 22 µmol N2 per plant h–1. The relationshipsbetween nitrogenase respiration, acetylene reduction rates andN2 fixation rates are discussed. Trifolium repens, white clover, defoliation, nodule respiration, N2, fixation, nitrogenase  相似文献   

7.
Single plants of white clover grown in controlled environments,and dependent for nitrogen on N, fixation, were defoliated at1 or 2 d intervals to 3, 2 and 1 expanded leaves per stolon(Expt 1), and to 1,0.5 (1 leaf on every alternate stolon) and0 expanded leaves per stolon (Expt 2), for 43–50 days Plants adapted to severe defoliation by developing much smallerleaves with a slightly reduced specific leaf area, more stolons,a smaller proportion of weight in leaf, root and nodules anda greater proportion of weight in stolons. The daily yield (materialremoved by defoliation) of d. wt and nitrogen generally decreasedwith severity of defoliation, as did the residual plant weight.However, the ‘efficiency’ of yield (daily yield/residualweight x 100) of dry matter and nitrogen was greater in themost severely defoliated treatments, attaining a maximum of5–6 % All plants adapted to the imposed defoliation regimes, howeversevere, with the result that even plants maintained withoutany fully expanded leaves invested a similar fraction of theirmetabolic resources in shoot and root as less severely defoliatedplants, and continued to grow and fix N2, albeit at a very reducedrate of 1–2 mg Nd–11. The energetic cost of N2 fixation(acetylene reduction) remained constant in all treatments at31 mole CO2 mole C2H4–1, but there was some evidence thatrate of N2 fixation per unit of nodule weight declined in themost harshly defoliated treatment. Trifolium repens, white clover, continous defolation, growth, N2 fixation  相似文献   

8.
Nitrate reductase activity (NRA, in vivo assay) and nitrate(NO-3) content of root and shoot and NO-3 and reduced nitrogencontent of xylem sap were measured in five temperate cerealssupplied with a range of NO-3 concentrations (0·1–20mol m–3) and three temperate pasture grasses suppliedwith 0·5 or 5 0 mol m–3 NO-3 For one cereal (Hordeumvulgare L ), in vitro NRA was also determined The effect ofexternal NO-3 concentration on the partitioning of NO-3 assimilationbetween root and shoot was assessed All measurements indicatedthat the root was the major site of NO3 assimilation in Avenasatwa L, Hordeum vulgare L, Secale cereale L, Tnticum aestivumL and x Triticosecale Wittm supplied with 0·1 to 1·0mol m–3 NO-3 and that for all cereals, shoot assimilationincreased in importance as applied NO-3 concentration increasedfrom 1.0 to 20 mol m–3 At 5.0–20 mol m–3 NO3,the data indicated that the shoot played an important if notmajor role in NO-3 assimilation in all cereals studied Measurementson Lolium multiflorum Lam and L perenne L indicated that theroot was the main site of NO-3 assimilation at 0.5 mol m–3NO-3 but shoot assimilation was predominant at 5.0 mol m–3NO-3 Both NRA distribution data and xylem sap analysis indicatedthat shoot assimilation was predominant in Dactylis glomerataL supplied with 0.5 or 5.0 mol m–3 NO-3 Avena sativa L., oats, Hordeum vulgare L., barley, Secale cereale L., rye, x Triticosecale Wittm., triticale, Triticum aestivum L., wheat, Dactylis glomerata L., cocksfoot, Lolium multiflorum Lam., Italian ryegrass, Lolium perenne L., perennial ryegrass, nitrate, nitrate assimilation, nitrate reductase activity, xylem sap  相似文献   

9.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

10.
Plants ofLolium perenneandFestuca rubrawere grown in sand culturereceiving all nutrients as a complete nutrient solution containing1.5 mMNH4NO3, and subjected to one of three defoliation treatments:undefoliated, defoliated on one occasion, or defoliated weekly.15Nlabelling was used to determine the rate of N uptake, allowingthe amount of N remobilized from storage for the growth of thetwo youngest leaves (subsequently referred to as ‘newleaves’) growing over a 14 d period after defoliationto be calculated. The total plant N uptake by both species wasreduced, compared with undefoliated plants, by both a singleand repeated defoliation, although neither caused complete inhibitionof uptake. Regularly defoliatedL. perennehad a greater reductionin root mass, concomitant with a greater increase in N uptakeper g root than did regularly defoliatedF. rubra. In both species,the amount of N derived from uptake recovered in the new leaveswas unaffected by the frequency of defoliation. BothL. perenneandF.rubramobilized nitrogen to the new leaves after a single defoliation,mobilization being sufficient to supply 50 and 41%, respectively,of the total nitrogen requirement. In regularly defoliated plants,no significant nitrogen was mobilized to the new leaves inL.perenne, and only a small amount was mobilized inF. rubra. Plantsachieved greater leaf regrowth when only defoliated once. Weconclude that increasing the frequency of defoliation of bothL.perenneandF. rubrahad little effect on the uptake of nitrogenby roots which was subsequently supplied to new leaves, butdepleted their capacity for nitrogen remobilization, resultingin a reduction in the rate of growth of new leaves. Lolium perenne; Festuca rubra; defoliation frequency; mobilization; root uptake; nitrogen  相似文献   

11.
Assimilate Distribution in Poa annua L.   总被引:1,自引:0,他引:1  
The carbon economy of a flowering tiller of Poa annua L. hasbeen examined over the period from inflorescence emergence tograin shedding. The total import of 14C by the inflorescencereached a maximum at late grain filling but the relative importof assimilate was greatest 14 days after its appearance andrepresented 20–25 per cent of that assimilated by theinflorescence itself. The inflorescence continued to be an importantassimilatory organ after grain ripening when it exported morethan 50 per cent of its assimilate to the stem, roots and othertillers. The patterns of distribution of assimilates from the youngestuppermost and the oldest green leaf of the reproductive tillerwere largely determined by the stage of development of the inflorescence.The youngest leaf mainly supported the inflorescence up to theend of the grain-filling stage but then supplied assimilatesbasally to the roots and adjacent tillers. The oldest greenleaf supported the growth of the stem and the inflorescenceup to anthesis but after this supplied assimilates mainly tothe roots and tillers. Removal of grains or the entire inflorescence only 1 h beforesupplying 14CO2 greatly reduced the rate of fixation of 14CO2and the export of radiocarbon, as well as changing the patternof distribution of assimilates within the plant. The significanceof these results is discussed and comparisons made with cerealsand perennial grasses.  相似文献   

12.
In both reproductive and vegetative plants of Lolium temulentumL., the export of 14C-labelled assimilates from each healthyleaf on the main shoot to terminal meristem, stem, tillers,and roots was measured each time a new leaf was expanded, fora period of 5 to 6 weeks. Some labelled assimilates moved fromeach leaf on the main shoot to every meristem in the same shoot,as well as to the tops and roots of adjacent organically attachedtillers. The terminal meristem of the reproductive shoot, which includedthe developing inflorescence, received 70–80 per centof the carbon assimilated by the emerged portion of the growingleaf, 15–25 per cent of the carbon assimilated by thetwo youngest expanded leaves, and 5–10 per cent of thatfrom each of the older leaves. A similar pattern of carbon supplyto the terminal meristem was found in vegetative shoots, exceptthat older leaves on young vegetative shoots supplied even lessof their carbon to the terminal meristem. The general conclusionis that developing leaves at the tip of the shoot receive aboutthe same proportion of carbon from each leaf as does a developinginflorescence. Young expanded leaves provided most labelled assimilates forstem growth; during both reproductive and vegetative growth,expanded leaves increased their export of labelled carbon tostem, and exported less of their 14C to roots and sometimesto tillers. In these reproductive and vegetative shoots, grown in a constantexternal environment, the major changes in the pattern of distributionof labelled assimilates appeared to be the result of increasedmeristematic activity in stem internodes; the development ofan inflorescence had no obvious direct effect on the carboneconomy of shoots.  相似文献   

13.
Concentrations of inorganic cations are often lower in plantssupplied with NH4+ as compared with NO3. To examine whetherthis is attributable to impaired root uptake of cations or lowerinternal demand, the rates of uptake and translocation of K,Mg, and Ca were compared in maize plants (Zea mays L.) withdifferent growth-related nutrient demands. Plants were grownin nutrient solution with either 1·0 mol m–3 NO3or NH4+ and the shoot growth rate per unit weight of roots wasmodified by varying the temperature of the shoot base (SBT)including the apical shoot meristem. The shoot growth rate per unit weight of roots, which was takenas the parameter for the nutrient demand imposed on the rootsystem, was markedly lower at 12°C than at 24°C SBT.As a consequence of the lower nutrient demand at 12°C SBT,uptake rates of NO3 and NH4+ declined by more than 50%Compared with NO3 supply, NH4+ nutrition depressed theconcentrations of K and particularly of Ca in the shoot, bothin plants with high and with low nutrient demand. This indicatesa control of cation concentration by internal demand ratherthan by uptake capacity of the roots. Translocation rates of K, Mg and Ca in the xylem exudate werelower in NH4+- than in NO3-fed plants. Net accumulationrates of Ca in the shoot were also decreased, whereas net accumulationrates of K in the shoot were even higher in NH4+-fed plants.It is concluded that reduced cation concentrations in the xylemsap of plants supplied with NH4+ are due to the lower demandof cations for charge balance. The lower K translocation tothe shoot is compensated by reduced retranslocation to the roots.For Ca, in contrast, decreased translocation rates in NH4+-fedplants result in lower shoot concentration. Key words: Nitrogen form, cation nutrition, charge balance, xylem exudate, recirculation  相似文献   

14.
The effects of a range of applied nitrate (NO3) concentrations(0–20 mol m3) on germination and emergence percentageof Triticum aestivum L. cv. Otane were examined at 30, 60, 90and 120 mm sowing depths. Germination percentage was not affectedby either sowing depth or applied NO3 concentration whereasemergence percentage decreased with increased sowing depth regardlessof applied NO3 concentration. Nitrate did not affectemergence percentage at 30 mm sowing depth, but at 60 to 120mm depth, emergence percentage decreased sharply with an increasedapplied NO3 concentration of 0 to 1·0 mol m–3then decreased only slightly with further increases in appliedNO3 of about 5·0 mol m–3. Root and shoot growth, NO3 accumulation and nitrate reductaseactivity (NRA) of plants supplied with 0, 1·0 and 1·0mol m–3 NO3 at a sowing depth of 60 mm were measuredprior to emergence. The coleoptile of all seedlings opened withinthe substrate. Prior to emergence from the substrate, shootextension growth was unaffected by additional NO3 butshoot fr. wt. and dry wt. were both greater at 1·0 and1·0 mol m–3 NO3 than with zero NO3.Root dry wt. was unaffected by NO3. Nitrate concentrationand NRA in root and shoot were always low without NO3.At 1·0 and 10 mol m3 NO3, NO3 accumulatedin the root and shoot to concentrations substantially greaterthan that applied and caused the induction of NRA. Regardlessof the applied NO3 concentration, seedlings which failedto emerge still had substantial seed reserves one month afterplanting. Coleoptile length was substantially less for seedlingswhich did not emerge than for seedlings which emerged, but wasnot affected by NO3. It is proposed that (a) decreasedemergence percentage with increased sowing depth was due tothe emergence of leaf I from the coleoptile within the substrateand (b) decreased emergence percentage with additional NO3was due to the increased expansion of leaf 1 within the substrateresulting in greater folding and damage of the leaf. Key words: Triticum aestivwn L., nitrate, sowing depth, seedling growth, seedling emergence  相似文献   

15.
Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops   总被引:31,自引:0,他引:31  
A set of N-fertilization field experiments was used to determinethe 'critical nitrogen concentration', i.e, the minimal concentrationof total N in shoots that produced the maximum aerial dry matter,at a given time and field situation. A unique 'critical nitrogendilution curve' was obtained by plotting these concentrationsNct (% DM) vs. accumulated shoot biomass DM (t ha-1). It couldbe described by the equation: Nct = 5·35DM-0·442 when shoot biomass was between 1·55 and 12 t ha-1. Anexcellent fit was obtained between model and data (r2 = 0·98,15 d.f.). A very close relationship was found using reducedN instead of total N, because the nitrate concentrations inshoots corresponding to critical points were small. The criticalcurve was rather close to those reported by Greenwood et al.(1990) for C3 plants. However, this equation did not apply whenshoot biomass was less than 1·55 t ha-1. In this case,the critical N concentration was independent of shoot biomass:the constant critical value Nct = 4·4% is suggested forreduced-N. The model was validated in all the experimental situations,in spite of large differences in growth rate, cultivar, soiland climatic conditions; shoot biomass varying from 0·2to 14 t ha-1. Plant N concentration was found to vary by a factor of fourat a given shoot biomass level. In the heavily fertilized treatments,shoot N concentration could be 60% higher than the criticalconcentration. Most (on average 80%) of the extra N accumulatedwas in the form of reduced N. The proportion of nitrate to totalN in shoot mainly depended on the crop stage of development.It was independent of the nitrogen nutrition level.Copyright1994, 1999 Academic Press Winter wheat, Triticum aestivum, arable crops, plant N concentration, aerial biomass, critical nitrogen, dilution curve, fertilization, reduced N, nitrate  相似文献   

16.
Single white clover plants grown in pots of Perlite in a controlledenvironment and completely dependent on N2 fixation were defoliatedto various degrees (46–85 per cent of shoot weight removed).The soluble protein content of nodules declined by about 20per cent and leghaemoglobin content by 50 per cent in the first4–7 d after defoliation but increased again to controllevels as new leaf tissue appeared. In the short term (2–3h) carbohydrate content of nodules declined to different extentsdepending on the severity of defoliation. The initial declinein N2 fixation and the respiration associated with it, appearednot to be related to the instantaneous carbohydrate contentof nodules but rather to the supply of current photosynthatefrom the shoot. After 24–48 h, however, the carbohydratecontent of nodules had declined to low levels, regardless ofthe severity (46 or 71 per cent shoot removed) of defoliation.As new leaf tissue appeared carbohydrate levels in all partsof the plant gradually recovered towards control levels. Microscopic examination of nodule sections indicated that onlyafter very severe defoliation (80–85 per cent shoot removed)was nodule deterioration evident. Even here, as the plant establishednew leaves, the damage to nodules was repaired and no noduleloss was apparent. Trifolium repens, white clover, defoliation, carbohydrate, protein, leghaemoglobin  相似文献   

17.
Yamashita, T. 1987. Modulated degradation of ribulose ftisphosphatecarboxylase in leaves on top-pruned shoots of the mulberry tree(Morus alba L.).—J. exp. Bot. 38: 1957–1964. The effects of pruning shoot tops on the synthesis and degradationof ribulose 1,5–Wsphosphate carboxylase (RuBPCase) inleaves on remaining shoots were investigated in mulberry trees.Leucine labelled with 14C was fed to leaf discs from field-grownmulberry trees and 14C incorporation into RuBPCase was examined.Proportion of 14C in RuBPCase to leucine–14C absorbedby leaf discs was remarkably lowered by top-pruning, thoughoccasionally a slight increase was observed soon after pruning.Yet RuBPCase content in leaves on top-pruned shoots became progressivelyhigher than that in leaves on intact shoots. Changes in 14Cin Ru1BPCase in leaves of mulberry saplings previously fed 14CO2were followed. Following 14CO2 feeding, the attainment of themaximal level of 14C in RuBPCase was retarded by top-pruning.The highest level of 14C in RuBPCase was maintained in leaveson top-pruned shoots but decreased in leaves on intact shoots.Specific radioactivity in RuBPCase continued to increase inleaves on top-pruned shoots even after attaining a maximum levelin the control leaves. These facts suggest that the increasein RuBPCase by top-pruning results from a cessation of its degradationfor the remobilization of nitrogen for newly developing leaveson shoot tops. Key words: RuBP carboxylase, shoot pruning, mulberry (Morus alba)  相似文献   

18.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

19.
Ammonium influx into roots and N translocation to the shootswere measured in 3-week-old hydroponically grown rice seedlings(Oryza sativa L., cv. IR72) under conditions of N deprivationand NH4+ resupply, using 13NH4+as a tracer. Root NH4+ influxwas repressed in plants continuously supplied with NH4+ (at0.1 mM), but a high proportion of absorbed N (20 to 30%) wastranslocated to the shoot in the form of N assimilates duringthe 13-min loading and desorption periods. Interruption of exogenousNH4+ supply for periods of 1 to 3 d caused NH4+ influx to bede-repressed. This same treatment caused N translocation tothe shoot to decline rapidly, until, by 24 h, less than 5% ofthe absorbed 13N was translocated to the shoot, illustratinga clear priority of root over shoot N demand under conditionsof N deprivation. Upon resupplying 1 mM NH4+, root NH4+ influxresponded in a distinct four-phase pattern, exhibiting periodsin which NH4+ influx was first enhanced and subsequently reduced.Notably, a 25 to 40% increase in root influx, peaking at {smalltilde}2 h following re-exposure was correlated with a 4- to5-fold enhancement in shoot translocation and a repression ofroot GS activity. The transient increase of NH4+ influx wasalso observed in seedlings continuously supplied with NO3and subsequently transferred to NH4+. Extended exposure to NH4+caused root NH4+ influx to decrease progressively, while shoottranslocation was restored to {small tilde}30% of incoming NH4+.The nature of the feedback control of NH4+ influx as well asthe question of its inducibility are discussed. (Received August 7, 1998; Accepted September 21, 1998)  相似文献   

20.
Siddiqi, M. Y. and Glass, A. D. M. 1987. Regulation of K+ influxin barley: Evidence for a direct control of influx by K+ concentrationof root cells.—J. exp. Bot. 38: 935–947. The kinetics of K+ (86Rb+) influx into intact roots of barley(Hordeum vulgare L. cv. Fergus) seedlings having different combinationsof root and shoot [K+], different growth rates and differentroot:shoot weight ratios were studied. K+ influx was stronglycorrelated with root [K+]; shoot [K+], growth rates, and root:shoot ratios appeared to have little effect on K+ influx. Adetailed study showed that both Vmax and Km for K+ influx wereaffected by root [K+] but not by shoot [K+]. We have suggestedthat factors such as growth rates and root: shoot ratio mayaffect K+ influx indirectly primarily via their influence onroot factors such as root [K+]. We have reiterated that othertypes of kinetic control, e.g. increased or decreased synthesisof ‘carrier systems’, may operate in addition todirect (allosteric?) control of K+ influx by root [K+]. Thenegative feedback signal from root [K+] appeared to be the primeeffector in the regulation of K+ influx. Key words: Barley, K+ influx  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号