首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
吸器是寄生植物的特征器官,研究影响其发生的因素,有助于了解寄生关系的建立和调控过程。该研究以两种列当科(Orobanchaceae)根部半寄生植物甘肃马先蒿(Pedicularis kansuensis)和松蒿(Phtheirospermum japonicum)为材料,通过皿内培养试验,分析了蔗糖、DMBQ(2,6-二甲氧基-对-苯醌,一种高效的列当科根部半寄生植物吸器诱导化合物)和寄主植物诱导下两种根部半寄生植物吸器发生情况。结果表明:(1)蔗糖显著促进两种根部半寄生植物吸器发生,无寄主存在时,2%蔗糖处理使甘肃马先蒿和松蒿吸器发生率分别提高39.9%和20.2%。(2)蔗糖明显提升寄主植物对两种根部半寄生植物的吸器诱导水平,添加蔗糖后,寄主诱导的甘肃马先蒿单株吸器数和具木质桥的吸器比例分别增加5.7个/株和17.9%,松蒿吸器发生率和具木质桥的吸器比例分别提升76.7%和16.2%。(3)蔗糖对松蒿吸器发生的促进作用与已知吸器诱导化合物DMBQ相当,均能诱导50%以上的植株产生吸器。(4)培养基中添加4%蔗糖对两种根部半寄生植物的吸器诱导效果最好,其中甘肃马先蒿吸器发生率为56%...  相似文献   

2.
Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.

Subtilases specifically expressed in intrusive cells regulate auxin-mediated host–parasite connections in the parasitic plant Phtheirospermum japonicum.  相似文献   

3.
4.
Gas exchange characteristics are reported for both members of the sorghum-Striga host-parasite association. Both Striga hermonthica (Del.) Benth and Striga asiatica (L.) Kuntze had transpiration rates considerably in excess of those of sorghum (Sorghum bicolor (L.) Moench, cv CSH1). Stomatal conductance in both Striga spp. showed little response to periods of darkness and moderate water stress. Low rates of net CO2 fixation and high rates of dark respiration led to no net daily (24 hours) C gain, and Striga would appear to be reliant on its host for photosynthate. Infection of sorghum plants with either S. hermonthica or S. asiatica reduced host photosynthetic capacity. Infected sorghum plants were also more prone to water stress, but reduced rates of CO2 fixation could not be accounted for in terms of lower stomatal conductance. Lower stomatal conductances were associated with an increase in water use efficiency (WUE) in uninfected sorghum; however, Striga-infected sorghum plants had lower WUE than those of uninfected plants. We suggest that Striga exerts a specific effect on processes affecting C acquisition in sorghum leaves. The water relations of S. hermonthica and S. asiatica are not characteristic of plants growing in semiarid environments and are more likely to reflect the nature of the parasitic life-style. Despite transfer of water and solutes from host to parasite, the reduction in C fixation observed in infected sorghum plants appears to be the major determinant of growth reductions observed in sorghum supporting Striga.  相似文献   

5.
Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discussed.  相似文献   

6.
Summary The haustorial structure of three African parasitic members of the family Scrophulariaceae (Buchnera hispida, Rhamphicarpa fistulosa, andStriga hermonthica) has been studied with regard to the interface between haustoria and the invaded host roots. Immunocytochemical observations at the light and electron microscopical level were carried out with monoclonal antibodies against pectin. JIM5, JIM7, and hydroxyproline-rich glycoprotein (HRGP), LM1. Lignins have been visualized by phloroglucinolhydrochloric acid staining. At the margin of the lateral interface (contact area of host root cortex and parasite cells), JIM5- and JIM7-labelled substances accumulate between parasite papillae and the host root surface indicating that pectins are implicated in sealing the parasite to the attacked host organ. The lateral interface is characterized by the presence of compressed, necrotic host cells, whereas the central interface (contact area between host stele and parasite cells) is generally devoid of host cell remnants. Phenolic substances and/or lignins can be found at the site of penetration of the haustorium into the host root. These observations and the fact that HRGPs accumulate at the host side of the interface support the view of, at least, a partial defense reaction in the invaded host root tissues. Within haustoria, HRGPs were restricted to differentiating xylem elements, implying a spatio-temporal regulation of HRGPs in developmental processes.Abbreviations BSA bovine serum albumin - FITC fluorescein isothiocyanate - HRGP hydroxyproline-rich glycoprotein - LM light microscopy - MAb monoclonal antibody - TBSB Tris-buffered saline with bovine serum albumin - TBSB-T Tris-buffered saline with bovine serum albumin and Tween 20 - TEM transmission electron microscopy  相似文献   

7.
Abstract Growth and gas exchange measurements are used in conjunction with a carbon balance model to describe the millet (Pennisetum typhoides)–witchweed (Striga hermonthica) host—parasite association. Striga hermonthica reduces the growth of millet by 28% and radically alters the architecture of infected plants. Whilst grain yield and stem dry weight are reduced (by 80 and 53%, respectively), leaf and root growth are stimulated (by 41 and 86%, respectively). The difference in production between infected and uninfected millet plants can be accounted for by two processes: first, export of carbon to the parasite (accounting for 16% of the dry weight not gained); and second, parasite-induced reductions in host photosynthesis (accounting for 84% of the dry weight not gained). Striga hermonthica is dependent on carbon exported from the host, since the plant has low rates of photosynthesis coupled with high rates of respiration. The carbon balance model suggests that in mature S. hermonthica plants parasitic on millet, 85% of the carbon is host-derived. Carbon fluxes are also estimated using δ13C measurements, since S. hermonthica is a C3 plant parasitizing a C4 host. In conjunction with gas exchange measurements, these suggest that in root, stem and leaf of S. hermonthica, 87, 70 and 49% of carbon is hostderived, respectively.  相似文献   

8.
A glasshouse experiment was carried out to investigate the factorscontrolling the abstraction of xylem fluid from its host bythe parasiteStriga hermonthica(Scrophulariaceae).Strigahad amean daily transpiration rate far exceeding that of its hostsorghum (Sorghum bicolor), with infestation byStrigaalso shownto lower the transpiration rate of the host. Stopping the host'stranspiration was shown to decrease the transpiration rate ofthe parasite. Stopping the parasite's transpiration only gavean initial increase in the host's transpiration rate which wasnot sustained. The parasite had a lower water potential thanits host, values being -0.42 MPa and -0.23 MPa, respectively,and an accompanying higher osmotic pressure of 0.68 MPa against0.51 MPa for sorghum. Modifying the water potential gradientby bagging both partners together showed that the differentialin osmotic pressure and water potential was largely maintainedby the parasite's higher rate of transpiration. A favourablewater potential gradient towards the parasite still existedfollowing the cessation of transpiration, this being generatedby the haustorial resistance to hydraulic conductivity whichwas found to be some 1.5–4.5 times greater than that offeredby the parasite shoot. Both the high rate of transpiration andthe increased resistance across the haustoria would appear tobe necessary means to facilitate the diversion of host resourcesto the parasite.Copyright 1997 Annals of Botany Company Striga hermonthica; sorghum; water relations; haustorium; root parasite  相似文献   

9.
10.
Ishida JK  Yoshida S  Ito M  Namba S  Shirasu K 《PloS one》2011,6(10):e25802

Background

Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood.

Methodology/Principal Findings

We developed transient and stable transformation systems for Phtheirospermum japonicum, a facultative parasitic plant in the Orobanchaceae. The transformation protocol was established by a combination of sonication and acetosyringone treatments using the hairy-root-inducing bacterium, Agrobacterium rhizogenes and young seedlings. Transgenic hairy roots of P. japonicum were obtained from cotyledons 2 to 3 weeks after A. rhizogenes inoculation. The presence and the expression of transgenes in P. japonicum were verified by genomic PCR, Southern blot and RT-PCR methods. Transgenic roots derived from A. rhizogenes-mediated transformation were able to develop haustoria on rice and maize roots. Transgenic roots also formed apparently competent haustoria in response to 2,6-dimethoxy-1,4-benzoquinone (DMBQ), a haustorium-inducing chemical. Using this system, we introduced a reporter gene with a Cyclin B1 promoter into P. japonicum, and visualized cell division during haustorium formation.

Conclusions

We provide an easy and efficient method for hairy-root transformation of P. japonicum. Transgenic marker analysis revealed that cell divisions during haustorium development occur 24 h after DMBQ treatment. The protocols described here will allow functional analysis of genes involved in plant parasitism.  相似文献   

11.

Background  

Parasitic plants in the Orobanchaceae develop invasive root haustoria upon contact with host roots or root factors. The development of haustoria can be visually monitored and is rapid, highly synchronous, and strongly dependent on host factor exposure; therefore it provides a tractable system for studying chemical communications between roots of different plants.  相似文献   

12.
13.
Maize seedlings were grown in pots either with or without preconditionedseeds of the parasitic weed, Striga hermonthica. After between4 and 8 weeks, net photosynthesis in the leaves of maize plantsinfected with Striga decreased compared to leaves of uninfectedcontrol plants. The activities of four enzymes of photosyntheticmetabolism were, however, little affected by infection. A pulse-chaseexperiment using 14CO2 showed that C4 acids were the main earlyproducts of assimilation even when the rate of photosynthesiswas much decreased by infection, but more radio-activity appearedin glycine and serine than in leaves of healthy maize plants.Leaves of infected maize required longer to reach a steady rateof photosynthesis upon enclosure in a leaf chamber than leavesof uninfected plants after similar treatment. Electron microscopy of transverse sections of the leaves ofinfected maize indicated that the cell walls in the bundle sheathand vascular tissue were less robust than in leaves of healthyplants. The results suggest that infection with Striga causesan increase in the permeability of cell walls in the bundlesheath, leakage of CO2 from the bundle sheath cells and decreasedeffectiveness of C4 photosynthesis in host leaves. Key words: Zea mays, Striga hermonthica, photosynthesis, photorespiration, enzyme activity  相似文献   

14.
The gas exchange of the upper fully expanded leaf of the root parasite Striga hermonthica and of its host Sorghum bicolor was measured under wet and dry conditions to identify the mechanisms of the devastating effects of the parasite on its hosts under drought. The short-term water stress severely reduced photosynthetic rate in infected sorghum, but less in S. hermonthica. Soil water stress did not affect leaf respiration rate in either S. hermonthica or infected sorghum. This suggests that under dry conditions both infected sorghum and S. hermonthica decreased autotrophic carbon gain. The transpiration rate of S. hermonthica, a major driving force for assimilate uptake from the host, was higher and less affected by water stress than that of infected sorghum. Stomatal density on the abaxial surfaces of the leaves was higher in S. hermonthica than in sorghum. Both S. hermonthica infection and water stress decreased stomatal conductance of the sorghum leaves. S. hermonthica, irrespective of soil water status, had greater stomatal aperture on the adaxial and abaxial surfaces of its leaves than infected sorghum. These results indicate that the higher transpiration rate of S. hermonthica even under water stress, achieved through higher stomatal density on the abaxial surfaces of the leaves and greater stomatal aperture on both surfaces of the leaves, may induce the maintenance of water and solute transfers from the host to the parasite leading to severe damage to the host under drought.  相似文献   

15.
Dodder (Cuscuta campestris) is one of the most important pests of tomato causing severe losses in yield. Cuscutain is a pre-pro-protein produced by dodder that has a cysteine proteinase function essential for normal development of the haustoria and parasitism, which involves the secretion and activation of cuscutain cysteine protease in the host plant tissue. The propeptide subunit of this enzyme has an inhibitory function and restricts the enzymatic activity of cuscutain. Here, we transformed the inhibitory propeptide segment of this enzyme into tomato and examined the tomato resistance to C. campestris. We demonstrate the expression of inhibitory propeptide in transgenic plants and find that it effectively interrupted cuscutain enzyme activity and haustoria development at the endophytic stage. Mature haustoria infecting transgenic hosts showed defects in searching hyphae development and these structures were not elongate, and in most cases no functional haustoria were formed due to inhibitor expression in the transgenic plants after prehaustoria contact. Dodder grown on transgenic lines showed an overall reduction in vigor and fecundity due to defective attachment of haustoria. The increased growth of dodder-challenged transgenic plants relative to controls, demonstrates the efficacy of cysteine protease inhibition in parasite plant control.  相似文献   

16.
Autotrophic photosynthesis in developing plants of Striga hermonthica, a C3 plant, parasitizing Sorghum bicolor, a C4 plant, has been quantified by measuring the 13C/12C isotope ratio (δ13C). This parameter has been determined in cellulose and chlorophyll extracted from plants 8 weeks after emergence. It is shown that these components are both proportionately high in autotrophic carbon in the leaf material, thus confirming the previous hypothesis that St. hermonthica photo-assimilate is directed primarily towards the synthesis of new photosynthetic capacity.  相似文献   

17.
We report the effects of the root hemiparasite Striga hermonthica (Del.) Benth. on the growth and photosynthesis of two cultivars of sorghum: CSH-1, a susceptible variety, and Ochuti, which shows some tolerance to S. hermonthica in the field. Within 4 d of parasite attachment to the host roots, infected plants of both cultivars were significantly shorter than uninfected controls. At 55 d, infected plants of both cultivars had significantly less shoot and root biomass, and significantly smaller leaf areas than uninfected controls. The dry weight of S. hermonthica attached to host roots was insufficient at this stage to explain the decreased growth in terms of a competing sink for carbon and nitrogen. Leaf chlorophyll and nitrogen per unit area were greater in infected plants of both cultivars compared with control plants. However, whereas photosynthesis and transpiration in young leaves of infected CSH-1 plants declined with time when compared with controls, the rates in infected Ochuti plants were similar to those in uninfected controls throughout the time course of observation. In both cultivars, a strong correlation was observed between the rate of photosynthesis and stomatal conductance during photosynthetic induction, but infection resulted in a much slower induction than in controls. In CSH-1 plants, both steady-state photosynthesis and stomatal conductance were lower than in controls, whereas in leaves of Ochuti steady-state photosynthesis and stomatal conductance eventually reached the same values as in the control leaves. Results from AlCi analysis and also from determination of 13C isotope discrimination were consistent with a stomatal limitation to photosynthesis in the leaves of Striga-infected plants. The concentration of the plant growth regulator abscisic acid (ABA) was measured in the xylem sap of infected CSH-1 plants only, and was found to be twice that of uninfected plants. A possible role of ABA in determining host response to infection by S. hermonthica is discussed.  相似文献   

18.
Summary An examination was made of the ultrastructure of haustoria or intracellular hyphae in four fungi: an obligate parasite (Puccinia hordei), a facultative parasite (Exobasidium japonicum) and two facultative saprophytes (Phytophthora palmivora and Sclerotinia fructigena). P. hordei haustoria showed the typical ultrastructure and host-parasite interface of most of the obligate parasites already studied. Connections between the host endoplasmic reticulum and host plasmalemma were observed at the encapsulation site. Tubules connecting the haustorial cytoplasm with the encapsulation, through the haustorial wall were occasionally seen. The host cell remained alive in the presence of the parasite. E. japonicum haustoria lacked a neck and encapsulation and were irregularly shaped, with branches which appeared to be partly surrounded by a sheath. Some of these branches showed cytoplasmic connections between the parasite and the host through the sheath. All the observed haustoria of E. japonicum were anucleate and contained only a few mitochondria and sparse membranes. The host cell was dead and its organelles disorganized. P. palmivora haustoria were simple with nucleus, endoplasmic reticulum, mitochondria and Golgi bodies. Neither sheath nor encapsulation was observed, and the host cell was also dead and disorganized. S. fructigena did not produce haustoria of any kind, the intercellular hyphae became intracellular by the degradation of the host cell walls, and the host cells were killed in advance of the growing hyphae.It is suggested that a new definition of haustorium is required to include all these intermediate haustorial bodies which cannot be included within the present concept of haustorium.  相似文献   

19.
Eleven populations of witchweed, Striga hermonthica, were collected in four regions of Mali and investigated with 12 microsatellite markers. Extensive genetic diversity was observed, with most plants heterozygous for most markers. Allelic diversity was broadly distributed across populations with little genetic differentiation and large amounts of gene flow. Nearby fields of pearl millet and sorghum were found to have indistinguishable witchweed populations. Some population structure was apparent, but did not correlate with the local environment or host genotype, suggesting that seed transportation or other human-driven variables act to differentiate central Malian S. hermonthica populations from southern Malian populations.  相似文献   

20.
DORR  INGE 《Annals of botany》1997,79(5):463-472
The cellular contact betweenStriga hermonthica andStriga asiaticaand their hosts,Zea mays andSorghum bicolor , was investigatedby light, transmission electron and scanning electron microscopy.The xylem connections between parasites and hosts involve veryspecific, clustered intrusions into the host's water conductingelements, predominantly into the large vessel elements. A singlehaustorial cell can penetrate a host vessel element with morethan one intrusion. All intrusions become covered by an additionalelectron-opaque wall layer. During subsequent differentiation,a dissolution of specific wall parts of the cell intrusionsoccurs so that open, cup- or trunk-like structures result. Thevessel-like host contact can comprise up to five openings withina single intrusion. Concomitantly, the intrusions and the haustorialcells to which they belong lose their protoplasts and transforminto elements which take up water. The walls of the haustorialcells and both wall parts of their appendages become stronglylignified. The water and nutrient absorbing structures insertedinto the host vessel are named ‘oscula’. Withinthe whole haustorial complex of bothStriga species no phloemelements were detected. Translocation of substances from hostto parasite are briefly discussed. Striga hermonthica ; Striga asiatica ; haustorial anatomy; xylem contact; osculum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号