首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Transient global cerebral ischemia leads to delayed neuronal cell death in the hippocampal CA1, caudate putamen and neocortex. If preischemic hyperglycemia exists, the same duration of ischemia recruits additional brain structures, such as dentate gyrus to become damaged. The objective of the present study is to determine whether activation of mitogen-activated protein kinases (MAPKs) plays a role in hyperglycemia-mediated ischemic neuronal damage. Using phopho-specific antibodies against c-jun NH2-terminal kinase (JNK) and p38 MAPK, we studied activation of these two MAPKs in ischemia-vulnerable neocortex and ischemia-resistant dentate gyrus in rats subjected to 15 min of forebrain ischemia and followed by 0.5, 1 and 3 hr of recirculation under normo- and hyperglycemic conditions. The results showed that levels of phosphorylated JNK increased in both normo- and hyperglycemic brains following blood reperfusion for 0.5 hr and persisted up to 3 hr in the neocortex but not in the dentate gyrus, implying JNK may play a role in mediating neuronal cell death after ischemia. However, since hyperglycemia did not further increase phospho-JNK, JNK may not contribute to the detrimental effect of hyperglycemia on neuronal cell death. The amount of phospho-p38 was not altered by ischemia under both normo- and hyperglycemic conditions, suggesting that p38 MAPK may not play a major role in mediating neuronal damage in these two structures.  相似文献   

4.
Oxidative stress during the chronic phase after stroke   总被引:3,自引:0,他引:3  
Stroke is a complex disease originating and developing on the background of genetic predisposition and interaction between different risk factors that chronically damage blood vessels. The search for an effective treatment of stroke patients is the main priority of basic and clinical sciences. The chronic phase of stroke provides possibilities for therapy directed toward stimulation of recovery processes as well as prophylaxis, which reduces the probability of subsequent cerebrovascular events. Oxidative stress is a potential contributor to the pathophysiological consequences of stroke. The aim of the present review is to summarize the current knowledge of the role of oxidative stress during the chronic phase after stroke and its contribution to the initiation of subsequent stroke. The relationship among inflammation, hemostatic abnormalities, and platelet activation in chronic stroke patients is discussed in the context of ongoing free radical processes and oxidative damage. Free radical-mediated effects of increased plasma level of homocysteine and its possible contribution to the processes leading to recurrent stroke are discussed as well. The status of the antioxidant defense system and the degree of oxidative damage in the circulation of stroke survivors are examined. The results are interpreted in view of the effects of the vascular risk factors for stroke that include additional activation of inflammatory and free radical mechanisms. Also, the possibilities for combined therapy including antioxidants in the acute and convalescent stages of stroke are considered. Future investigations are expected to elucidate the role of free radical processes in the chronic phase after stroke and to evaluate the prophylactic and therapeutic potential of anti-radical agents.  相似文献   

5.
6.
The overproduction of the free radical nitric oxide (NO) by activated immunocompetent cells with subsequent development of local oxidative stress is supposed to be one of the possible pathophysiological mechanisms of beta-cell damage during streptozotocin-induced diabetes. The blockade of increased NO production by simultaneous administration of NO-synthase inhibitors partially suppresses the hyperglycemia and the increase of glycated hemoglobin concentration. Here we summarize the current state of knowledge concerning the modulation of streptozotocin-induced diabetes development by treatment with NO-synthase inhibitors including the partial inhibition of the changes in serum leptin levels. The differences in the reaction to streptozotocin administration between wild type mice and inducible NO-synthase knockout mice are also discussed. The overproduction of NO during the development of streptozotocin-induced diabetes is probably an important part of the complex autoimmune reaction which leads to the destruction of pancreatic beta-cells. Further clarification of the role of nitric oxide in streptozotocin-induced diabetes development could have important clinical implications.  相似文献   

7.
Studies using animal models of stroke have demonstrated that free radicals are highly reactive molecules generated predominantly during cellular respiration and normal metabolism. Imbalance between cellular production of free radicals and the ability of cells to defend against them is referred to as oxidative stress. After ischemic brain damage introduced by ischemic stroke or reperfusion, production of reactive oxygen species may increase, sometimes drastically, leading to tissue damage via several different cellular molecular pathways. The damage can become more widespread due to weakened cellular antioxidant defense systems after ischemic stroke. These experimental findings have important implications for the treatment of human cerebral ischemia. Agents directed at eliminating oxygen radicals must be administered before, or in the early stages of, reperfusion after ischemia. The therapeutic window seems to be narrow and limited to, at most, a few hours. Future research may clarify the current hypothesis that the accuracy of gene expression could account for the recovery of cellular function after ischemic stroke. This may open the window to the future use of drug combinations that may be rationally administered sequentially. If the phenomenon of ischemic tolerance plays a role in this concept is still a matter of debate.  相似文献   

8.
Evidence of direct toxic effects of free radicals on the myocardium   总被引:2,自引:1,他引:1  
The hypothesis that oxygen-derived free radicals do indeed play a role in myocardial ischemic and reperfusion injury has received a lot of support. Experimental results have shown that free radical scavengers can protect against certain aspects of myocardial ischemic injury and that on reperfusion the heart approaches a level that is more normal than those hearts not receiving additional scavenging agents. Superoxide dismutase, catalase, glutathione peroxidase, hydroxyl radical scavengers and iron chelators such as desferrioxamine have proven successful in providing an increased level of recovery. These results indicate, as would be expected, that superoxide, hydrogen peroxide and hydroxyl radicals may all, at some point, either contribute to the injury or be important in generating a subsequent radical which causes damage. In addition, solutions capable of generating free radicals have been shown to cause damage to myocardial cells and the vascular endothelium that is similar to the damage observed during myocardial ischemic and reperfusion injury. Alterations in function, structure, flow, and membrane biochemistry have been documented and compared to ischemic injury. The continued investigation of the role of free radicals in ischemic injury is warranted in the hope of further elucidating the mechanisms involved in free radical injury, the sources of their generation, and in defining a treatment that will provide significant protection against this particular aspect of ischemic damage.  相似文献   

9.
Matrix metalloproteinase-9 (MMP-9) and NADPH oxidase contribute to blood-brain barrier (BBB) disruption after ischemic stroke. We have previously shown that normobaric hyperoxia (NBO) treatment reduces MMP-9 and oxygen free radical generation in ischemic brain. In this study, we tested the hypothesis that NBO protects the BBB through inhibiting NADPH oxidase-mediated MMP-9 induction in transient focal cerebral ischemia. Male Sprague-Dawley rats (n = 69) were given NBO (95% O2) or normoxia (21% O2) during 90-min filament occlusion of the middle cerebral artery. Cerebral microvessels were isolated for analyzing MMP-9 and NADPH oxidase. BBB damage was non-invasively quantified with magnetic resonance imaging. In normoxic rats, both NADPH oxidase catalytic subunit gp91(phox) and MMP-9 expression were up-regulated in ischemic hemispheric microvessels after 90-min middle cerebral artery occlusion with 22.5 h reperfusion. Inhibition of NADPH oxidase with apocynin reduced the MMP-9 increase, indicating a causal link between NADPH oxidase-derived superoxide and MMP-9 induction. NBO treatment inhibited gp91(phox) expression, NADPH oxidase activity, and MMP-9 induction, which led to significantly less BBB damage and brain edema in the ischemic brain. These results suggest that gp91(phox) containing NADPH oxidase plays an important role in MMP-9 induction in ischemic BBB microvasculature, and that NBO treatment may attenuate MMP-9 induction and brain edema through inhibiting NADPH oxidase after transient cerebral ischemia.  相似文献   

10.
Antioxidant strategies in the treatment of stroke   总被引:15,自引:0,他引:15  
Excessive production of free radicals is known to lead to cell injury in a variety of diseases, such as cerebral ischemia. In this review, we describe some of the numerous studies that have examined this oxidative stress and the efficiency of antioxidant strategies in focal cerebral ischemia. Besides using genetically modified mice, these strategies can be divided into three groups: (1) inhibition of free radical production, (2) scavenging of free radicals, and (3) increase of free radical degradation by using agents mimicking the enzymatic activity of endogenous antioxidants. Finally, the clinical trials that have tested or are currently testing the efficiency of antioxidants in patients suffering from stroke are reviewed. The results presented here lead us to consider that antioxidants are very promising drugs for the treatment of ischemic stroke.  相似文献   

11.
The immune system plays a fundamental role in both the development and pathobiology of stroke. Inflammasomes are multiprotein complexes that have come to be recognized as critical players in the inflammation that ultimately contributes to stroke severity. Inflammasomes recognize microbial and host-derived danger signals and activate caspase-1, which in turn controls the production of the pro-inflammatory cytokine IL-1β. We have shown that A151, a synthetic oligodeoxynucleotide containing multiple telemeric TTAGGG motifs, reduces IL-1β production by activated bone marrow derived macrophages that have been subjected to oxygen-glucose deprivation and LPS stimulation. Further, we demonstrate that A151 reduces the maturation of caspase-1 and IL-1β, the levels of both the iNOS and NLRP3 proteins, and the depolarization of mitochondrial membrane potential within such cells. In addition, we have demonstrated that A151 reduces ischemic brain damage and NLRP3 mRNA levels in SHR-SP rats that have undergone permanent middle cerebral artery occlusion. These findings clearly suggest that the modulation of inflammasome activity via A151 may contribute to a reduction in pro-inflammatory cytokine production by macrophages subjected to conditions that model brain ischemia and modulate ischemic brain damage in an animal model of stroke. Therefore, modulation of ischemic pathobiology by A151 may have a role in the development of novel stroke prevention and therapeutic strategies.  相似文献   

12.
炎症反应是造成脑卒中继发性脑损伤的关键因素之一。小胶质细胞作为脑内免疫细胞,在脑卒中的炎症反应具有重要作用。传统观念认为小胶质细胞促进炎症反应加重脑损伤。近年来的研究发现激活的小胶质细胞还能产生抗炎作用来加速脑损伤修复。因此,目前的研究将小胶质细胞分为促炎的M1型和抗炎的M2型。结合目前缺血性脑卒中的神经保护剂相对较少,靶向调控小胶质细胞的极化可能成为脑卒中新的治疗策略。研究发现中药能够通过抑制M1型小胶质细胞,并促进M2型的小胶质细胞来改善缺血性脑损伤,从而展现出对缺血性脑卒中的治疗潜力。本文综述了中药通过调节小胶质细胞极化表型来治疗脑卒中的相关研究,以期为缺血性脑卒中药物开发提供新的思路。  相似文献   

13.
Potential markers of oxidative stress in stroke   总被引:8,自引:0,他引:8  
Free radical production is increased in ischemic and hemorrhagic stroke, leading to oxidative stress that contributes to brain damage. The measurement of oxidative stress in stroke would be extremely important for a better understanding of its pathophysiology and for identifying subgroups of patients that might receive targeted therapeutic intervention. Since direct measurement of free radicals and oxidized molecules in the brain is difficult in humans, several biological substances have been investigated as potential peripheral markers. Among lipid peroxidation products, malondialdehyde, despite its relevant methodological limitations, is correlated with the size of ischemic stroke and clinical outcome, while F2-isoprostanes appear to be promising, but they have not been adequately evaluated. 8-Hydroxy-2-deoxyguanosine has been extensively investigated as markers of oxidative DNA damage but no study has been done in stroke patients. Also enzymatic and nonenzymatic antioxidants have been proposed as indirect markers. Among them ascorbic acid, alpha-tocopherol, uric acid, and superoxide dismutase are related to brain damage and clinical outcome. After a critical evaluation of the literature, we conclude that, while an ideal biomarker is not yet available, the balance between antioxidants and by-products of oxidative stress in the organism might be the best approach for the evaluation of oxidative stress in stroke patients.  相似文献   

14.
缺血性脑卒中发生时,基质金属蛋白酶等效应分子以及炎症反应、氧化应激等会破坏血脑屏障,增加缺血区有害产物进入脑组织, 产生脑水肿,引起继发性脑损伤。所以,保护与维持脑微血管内皮屏障功能的完整性,是脑卒中防治的重要策略之一。从调节效应分子 和相关信号通路的角度出发,综述中药活性成分对模拟缺血性脑卒中的体内外脑微血管内皮屏障功能损伤模型的改善作用研究进展,以 期为进一步阐释中药活性成分防治缺血性脑卒中的作用机制以及新药创制提供参考和依据。  相似文献   

15.
16.
The mechanisms that contribute to inflammatory damage following ischemic stroke are poorly characterized, but studies indicate a role for both complement and P-selectin. In this study, we show that compared with wild-type mice, C3-deficient mice showed significant improvement in survival, neurological deficit, and infarct size at 24 h after middle cerebral artery occlusion and reperfusion. Furthermore, P-selectin protein expression was undetectable in the cerebral microvasculature of C3-deficient mice following reperfusion, and there was reduced neutrophil influx, reduced microthrombus formation, and increased blood flow postreperfusion in C3-deficient mice. We further investigated the use of a novel complement inhibitory protein in a therapeutic paradigm. Complement receptor 2 (CR2)-Crry inhibits complement activation at the C3 stage and targets to sites of complement activation. Treatment of normal mice with CR2-Crry at 30 min postreperfusion resulted in a similar level of protection to that seen in C3-deficient mice in all of the above-measured parameters. The data demonstrate an important role for complement in cerebrovascular thrombosis, inflammation, and injury following ischemic stroke. P-selectin expression in the cerebrovasculature, which is also implicated in cerebral ischemia and reperfusion injury, was shown to be distal to and dependent on complement activation. Data also show that a CR2-targeted approach of complement inhibition provides appropriate bioavailability in cerebral injury to enable complement inhibition at a dose that does not significantly affect systemic levels of serum complement activity, a potential benefit for stroke patients where immunosuppression would be undesirable due to significantly increased susceptibility to lung infection.  相似文献   

17.
Brain injury following cerebral ischaemia (stroke) involves a complex combination of pathological processes, including excitotoxicity and inflammation leading to necrotic and apoptotic forms of cell death. At the cellular level, excitotoxicity is mediated by glutamate and its cognate receptors, resulting in increased intracellular calcium and free radical production, and eventual cell death. Recent evidence suggests that scaffolding molecules that associate with glutamate receptors at the postsynaptic density allow coupling of receptor activity to specific second messengers capable of mediating excitotoxicity. These findings have important implications in the search for effective neuroprotective therapies in treating stroke.  相似文献   

18.
血管性痴呆(vascular dementia,VD)是指由各种脑血管病,包括缺血性脑血管病、出血性脑血管病及急性与慢性缺氧性脑血管病引起的脑功能障碍,进而产生认知功能障碍的临床综合征。血管性痴呆是一种慢性进行性疾病,被认为是仅次于阿尔兹海默症,导致痴呆的第2位原因。目前,血管性痴呆的发病机制尚不明确,有可能与炎症、神经元损伤、胆碱能系统功能障碍、脑白质病变及氧化应激等有关。其中,炎症反应在急性与慢性脑缺血继发性脑损伤中起主要作用。抑制炎症能改善血管性痴呆动物模型的症状,显示炎症可能在血管性痴呆发病机制中发挥重要作用。参与炎症反应的相关因子,如细胞因子等可对中枢神经系统造成损伤。同时,炎症相关因子会触发炎症级联反应,加重脑损伤。本文总结了有关炎症相关因子参与导致血管性痴呆的各种病理损害和促进其发生发展的分子机制的最新研究进展,这些都有助于了解炎症相关因子在血管性痴呆发病机制中的作用。  相似文献   

19.
The role of polymorphonuclear neutrophils (PMN) in mediating diabetic tissue damage to the periodontium was investigated in a novel model of chronic hyperglycemia, the Akita mouse. Induction of acute peritoneal inflammation in wild-type (WT) and Akita mice resulted in exaggerated IL-6 response in Akita mice (2.9-fold increase over WT values) and a markedly increased chemokine response (KC, 2.6-fold; MCP-1, 2.6-fold; and MIP-1alpha, 4.4-fold increase over WT values). Chemotaxis to both fMLP and WKYMVm was significantly reduced in isolated Akita PMN compared with WT PMN as measured in a Boyden chamber. Superoxide release in contrast was significantly increased in Akita PMN as measured with cytochrome c reduction. Bone marrow-derived Akita PMN showed partial translocation of p47phox to the cell membrane without external stimulation, suggesting premature assembly of the superoxide-producing NADPH oxidase in hyperglycemia. In vivo studies revealed that ligature-induced periodontal bone loss is significantly greater in Akita mice compared with WT. Moreover, intravital microscopy of gingival vessels showed that leukocyte rolling and attachment to the vascular endothelium is enhanced in periodontal vessels of Akita mice. These results indicate that chronic hyperglycemia predisposes to exaggerated inflammatory response and primes leukocytes for marginalization and superoxide production but not for transmigration. Thus, leukocyte defects in hyperglycemia may contribute to periodontal tissue damage by impairing the innate immune response to periodontal pathogens as well as by increasing free radical load in the gingival microvasculature.  相似文献   

20.
Vascular effects of oxygen-derived free radicals   总被引:5,自引:0,他引:5  
This review attempts to summarize the available data regarding the vascular actions of free oxygen radicals. Studies on blood vessels in situ and in vitro demonstrate that free oxygen radicals can evoke both vasodilation and vasoconstriction. Free oxygen radicals can modulate the tone of vascular smooth muscle by acting directly on the smooth muscle cells, and also via indirect mechanisms by changes in the production or biological activity of vasoactive mediators. The individual oxygen radicals may have different (sometimes opposite) vascular effects. Superoxide anion inactivates endothelium-derived relaxing factor and the adrenergic neurotransmitter norepinephrine. Hydrogen peroxide and the hydroxyl radical evoke vasodilation by acting directly on vascular smooth muscle and also by stimulating the synthesis/release of endothelium-derived relaxing factor. In acute arterial hypertension or experimental brain injury oxygen radicals are important mediators of vascular damage. Production of oxygen-derived free radicals by activated neutrophils may be responsible for vasodilation and increased permeability of capillary membrane during the acute inflammatory process. Free oxygen radicals also play an important role in reperfusion injury of various organs, and vascular actions of the free radicals may contribute to the damage of parenchymal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号