首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human bone marrow mesenchymal stem cells (hBM-MSC) have recently been employed in the clinical treatment of challenging skin defects. We have described an MSC population that can be easily harvested from human umbilical cord perivascular tissue, human umbilical cord perivascular cells (HUCPVC), which exhibit a higher proliferative rate and frequency than hBM-MSC. Our objective was to establish whether HUCPVC could promote healing of full thickness murine skin defects, and thus find utility as a cell source for dermal repair. To this end, bilateral full thickness defects were created on the dorsum of Balb/c nude mice. Fibrin was used as a delivery vehicle for 1 x 106 PKH-67 labeled HUCPVC with contralateral controls receiving fibrin only. Epifluorescent and brightfield microscopic evaluation of the wound site was carried out at 3 and 7 days while mechanical testing of wounds was carried out at 3, 7, and 10 days. Our results show that by 3 days, marked contraction of the wound was observed in the fibrin controls whilst the HUCPVC samples exhibited neither collapse nor contraction of the defect, and the dermal repair tissue was considerably thicker and more organized. By 7 days, complete re-epithelialization of the HUCPVC wounds was observed whilst in the controls re-epithelialization was limited to the wound margins. Wound strength was significantly increased in the HUCPVC treatment group by 3 and 7 days but no statistical difference was seen at 10 days. We conclude that HUCPVCs accelerate early wound healing in full thickness skin defects and thus represent a putative source of human MSCs for use in dermal tissue engineering.  相似文献   

2.
Background aimsMesenchymal stromal cells (MSC) can be isolated from the perivascular connective tissue of umbilical cords, called Wharton's jelly. These human umbilical cord perivascular cells (HUCPVC) might provide therapeutic benefits when treating skeletal or cutaneous malformations in neonatal patients.MethodsHUCPVC were isolated, and their proliferation rate, marker expression and multilineage differentiation potential determined. HUCPVC or their conditioned medium (HUCPVC-CM) was injected into the excisional wound of a mouse splinted-wound model. The effects of the treatment on wound closure were examined by morphohistochemical and gene expression analyses.ResultsHUCPVC expressed typical MSC markers and could differentiate into osteoblastic and adipogenic lineages. HUCPVC transplanted into the mouse wound accelerated wound closure. Immunohistologic analysis showed that the HUCPVC accelerated wound healing by enhancing collagen deposition and angiogenesis via paracrine mechanisms. Furthermore, treatment with HUCPVC-CM alone significantly enhanced wound closure. HUCPVC-CM increased the number of anti-inflammatory M2 macrophages expressing resistin-like molecule (RELM)-α/CD11b and promoted neovessel maturation. Quantitative polymerase chain reaction (PCR) analysis showed that HUCPVC-CM increased the expression of tissue-repairing cytokines interleukin (IL)-10, transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF)-1 and angiopoietin-1 at the healing wound.ConclusionsOur results show that HUCPVC promotes wound healing via multifaceted paracrine mechanisms. Together with their ability to differentiate into the osteogenic linage, HUCPVC may provide significant therapeutic benefits for treating wounds in neonatal patients.  相似文献   

3.
The possibility to use a suspended tridimensional matrix as scaffolding for re-epithelialization of in vitro cutaneous wounds was investigated with the aid of a human in vitro wound healing model based on viable full thickness skin. Macroporous gelatin microcarriers, CultiSpher-S, were applied to in vitro wounds and cultured for 21 days. Tissue sections showed incorporation of wound edge keratinocytes into the microcarriers and thicker neoepidermis in wounds treated with microcarriers. Thickness of the neoepidermis was measured digitally, using immunohistochemical staining of keratins as epithelial demarcation. Air-lifting of wounds enhanced stratification in control wounds as well as wounds with CultiSpher-S. Immunohistochemical staining revealed expression of keratin 5, keratin 10, and laminin 5 in the neoepidermal component. We conclude that the CultiSpher-S microcarriers can function as tissue guiding scaffold for re-epithelialization of cutaneous wounds.  相似文献   

4.
We have investigated the wound-healing effects of mesenchymal stem cells (MSCs) in combination with human amniotic membrane (HAM) when grafted into full-thickness skin defects of rabbits. Five defects in each of four groups were respectively treated with HAM loaded with autologous MSCs (group A), HAM loaded with allologous MSCs (group B), HAM with injected autologous MSCs (group C), and HAM with injected allologous MSCs (group D). The size of the wounds was calculated for each group at 7, 12, and 15 days after grafting. The wounds were subsequently harvested at 25 days after grafting. Sections stained with hematoxylin and eosin were used to determine the quality of wound healing, as based on the characteristics and amount of granulated tissue in the epidermal and dermal layers. Groups A and B showed the most pronounced effect on wound closure, with statistically significant improvement in wound healing being seen on post-operative days 7, 12, and 15. Although a slight trend toward improved wound healing was seen in group A compared with group B, no statistically significant difference was found at any time point between the two groups. Histological examination of healed wounds from groups A and B showed a thin epidermis with mature differentiation and collagen bundle deposition plus recovered skin appendages in the dermal layer. In contrast, groups C and D showed thickened epidermis with immature epithelial cells and increased fibroblast proliferation with only partially recovered skin appendages in the dermal layer. Thus, the graft of HAM loaded with MSCs played an effective role during the healing of skin defects in rabbits, with no significant difference being observed in wound healing between autologous and allologous MSC transplantation. This study was supported by research funds from Dong-A University.  相似文献   

5.
We investigated the wound healing efficacy of the Foeniculum vulgare compounds, fenchone and limonene, using an excisional cutaneous wound model in rats. An excision wound was made on the back of the rat and fenchone and limonene were applied topically to the wounds once daily, separately or together, for 10 days. Tissue sections from the wounds were evaluated for histopathology. The healing potential was assessed by comparison to an untreated control group and an olive oil treated sham group. We scored wound healing based on epidermal regeneration, granulation tissue thickness and angiogenesis. After day 6, wound contraction with limonene was significantly better than for the control group. Ten days after treatment, a significant increase was observed in wound contraction and re-epithelialization in both fenchone and limonene oil treated groups compared to the sham group. Groups treated with fenchone and with fenchone + limonene scored significantly higher than the control group, but the difference was not statistically significant compared to the olive oil treated group. Our findings support the beneficial effects of fenchone and limonene for augmenting wound healing. The anti-inflammatory and antimicrobial activities of fenchone and limonene oil increased collagen synthesis and decreased the number of inflammatory cells during wound healing and may be useful for treating skin wounds.  相似文献   

6.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

7.
Wound healing in the integument of the sea cucumber, Thyone briareus, was studied for up to 50 days after inflicting wide excisional wounds and for 14 days after producing incisional wounds. Rapid re-epithelialization of the wound was effected by the migration of epidermal cells and pigment cells from the periphery of the wound margin. This occurred without apparent evidence of concomitant mitotic activity. Dermal wound healing was completed by the fourteenth day in the incision wounds but occurred very slowly in the broad excision wounds. Morula cells seem to be involved in both epidermal and dermal wound healing, although their precise role is unknown. In excisional wounds the integument was never completely restored to its normal appearance during 50 days of observation.  相似文献   

8.
Svensjö T  Pomahac B  Yao F  Slama J  Eriksson E 《Plastic and reconstructive surgery》2000,106(3):602-12; discussion 613-4
Full-thickness skin wounds are preferably allowed to heal under controlled hydration dressings such as hydrocolloids. It was hypothesized that a wet (liquid) environment rather than a dry or moist one would accelerate the wound healing process. We compared skin repair by secondary intention in full-thickness skin wounds in wet (saline), moist (hydrocolloid), and dry (gauze) conditions in an established porcine wound healing model. The study included three animals with a total of 70 wounds layered in a standardized fashion on the back of young Yorkshire pigs. Twelve days after wounding, 0 percent of dry, 20 percent of moist, and 86 percent of saline-treated wounds were completely reepithelialized (p values = 0.0046 and 0.027 for saline wounds compared with dry and moist wounds, respectively). The accelerated healing was caused at least in part by faster contraction in wet wounds (p value < 0.005 compared with that of other groups 9 and 12 days after wounding). Development of granulation tissue was faster in moist conditions than it was for dry and wet wounds. The thickness and number of cell layers of the newly formed epidermis were greater in dry and wet wounds than in moist ones. It was concluded that these full-thickness porcine skin wounds healed faster in a wet environment than in a moist one. Dry wounds healed more slowly than moist wounds. The basic mechanisms of skin wound repair were influenced by the treatment modality as demonstrated by the observed differences in granulation tissue formation, reepithelialization, and rate of wound contraction.  相似文献   

9.
Topical application of platelet-derived growth factor-BB (PDGF-BB) is considered to accelerate tissue repair of impaired chronic wounds. However, the vast literature is plagued with conflicting reports of its efficacy in animal models and this is often influenced by a wide array of experimental variables making it difficult to compare the results across the studies. To mitigate the confounding variables that influence the efficacy of topically applied PDGF-BB, we used a controlled full thickness splinted excisional wound model in db/db mice (type 2 diabetic mouse model) for our investigations. A carefully-defined silicone-splinted wound model, with reduced wound contraction, controlled splint and bandage maintenance, allowing for healing primarily by reepithelialization was employed. Two splinted 8 mm dorsal full thickness wounds were made in db/db mice. Wounds were topically treated once daily with either 3 µg PDGF-BB in 30 µl of 5% PEG-PBS vehicle or an equal volume of vehicle for 10 days. Body weights, wound contraction, wound closure, reepithelialization, collagen content, and wound bed inflammation were evaluated clinically and histopathologically. The bioactivity of PDGF-BB was confirmed by in vitro proliferation assay. PDGF-BB, although bioactive in vitro, failed to accelerate wound healing in vivo in the db/db mice using the splinted wound model. Considering that the predominant mechanism of wound healing in humans is by re-epeithelialization, the most appropriate model for evaluating therapeutics is one that uses splints to prevent excessive wound contraction. Here, we report that PDGF-BB does not promote wound closure by re-epithelialization in a murine splinted wound model. Our results highlight that the effects of cytoactive factors reported in vivo ought to be carefully interpreted with critical consideration of the wound model used.  相似文献   

10.
《Cytotherapy》2021,23(8):672-676
Background aimsThe treatment and care of human wounds represent an enormous burden on the medical system and patients alike. Chronic or delayed healing wounds are characterized by the inability to form proper granulation tissue, followed by deficiencies in keratinocyte migration and wound re-epithelialization, leading to increased likelihood of infection and poor wound outcomes. Human reticular acellular dermal matrix (HR-ADM) is one type of tissue graft developed to enhance closure of delayed healing wounds that has demonstrated clinical utility through accelerating closure of lower extremity diabetic ulcers, but the mechanisms underlying this clinical success are not well understood.MethodsThe authors utilized a diabetic murine splinted excisional wound model to investigate the effects of HR-ADM application on wound closure.ResultsThe authors demonstrate that application of HR-ADM served as a dermal scaffold and promoted rapid re-epithelialization and keratinocyte proliferation, resulting in accelerated wound closure while minimizing granulation tissue formation. HR-ADM-applied wounds also demonstrated evidence of cellular infiltration, neovascularization and collagen remodeling by the host organism.ConclusionsThese data suggest that HR-ADM supports epidermal closure in delayed healing wounds and remodeling of the matrix into host tissue, lending further support to the clinical success of HR-ADM described in clinical reports.  相似文献   

11.
In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.  相似文献   

12.
Since 1995, keratinocytes are grown into cultures and used as allografts for the coverage of deep dermal defects in our burn unit. Donor skin samples are mostly acquired from other burn patients. In addition, special methods of skin preservation allow us the use of skin, which has been taken in redundancy for split thickness skin grafting from nonburned patients.Thirty five patients with deep partial thickness burns in the face were treated since 1996 according to the following concept: Dermabrasion or tangential excision was performed before the 5(th) day following trauma. If viable dermis was present, the wounds were covered with sheets of allogeneic cultivated keratinocytes. In cases of deeper defects, autologous skin grafts were applied. In 23 cases, epithelialisation was achieved within 10 days, in 8 patients, a prolonged duration until complete healing was observed. In 5 faces, coverage of residual defects with skin grafts was necessary. The mentioned problems of wound healing occurred from infection, incomplete excision of burn eschar and a depth of the wound which was retrospectively seen too deep for the treatment with keratinocytes. At follow up, patients were examined clinically and functionally with Frey's faciometer(R), which is an instrument for quantification of mimic movements. In cases of uncomplicated healing, a nearly complete restitution was found.Other indications include deep dermal burns in children and the coverage of early excised wounds in adults, with a reasonable amount of viable dermis remaining, both resulting in a significant reduction of donor-site morbidity. In severely burned adults with limited donor sites, it offers the possibility of immediate definite coverage of large areas.  相似文献   

13.
The role of sensory nociceptor nerves in cutaneous wound healing was investigated following full-thickness 4-mm diameter dorsal cutaneous excision wounding of rats on postnatal day 12. In rats with intact innervation, wounds at 3 days contained large numbers of TUNEL- and BRDU-labeled nuclei, consistent with inflammatory cell death and granulation cell proliferation. Wound area and volume decreased through 11 days in concert with a transient appearance of alpha-smooth muscle actin-immunoreactive myofibroblasts, declining rates of cell division, and increased occurrence of apoptotic cells. Sensory denervation by capsaicin injections on postnatal days 2 and 9 reduced calcitonin gene-related peptide-immunoreactive wound innervation persistently by up to 43%. This was associated with increased wound surface area and volume, and delays in scab loss and re-epithelialization. Relative to control wounds, granulation tissue showed increased myofibroblast content at 5-7 days. Capsaicin-treated rats had more BRDU-labeled cells, including myofibroblasts, through day 7. Numbers of TUNEL apoptotic cells per unit area of tissue section were reduced by denervation in both early and late stages of healing. We conclude that partial loss of sensory innervation impairs cutaneous wound healing in developing rats, as manifested by delayed re-epithelialization and failure of the wound area to decrease normally through at least 21 days. This is associated with an abnormally enlarged wound tissue volume resulting from increased granulation cell proliferation without proportionate increases in apoptosis. These findings suggest that nociceptor innervation plays a critical role in wound healing by regulating wound cellularity.  相似文献   

14.
Inhibition of myofibroblasts by skin grafts.   总被引:7,自引:0,他引:7  
The myofibroblast population was studied by electron microscopy in rat wounds healing by (1) contraction of granulation tissue, (2) by coverage with split-skin grafts, and (3) by coverage with full-thickness skin grafts. In all 3 types of wounds, myofibroblasts appeared early and reached a peak number at two weeks after wounding. At this time, 40 to 50 percent of the wound fibroblasts had myofibroblast characteristics. The granulating wounds contracted rapidly and completely, and had long persistence of myofibroblasts. Split-skin grafted wounds contracted less and had a more rapid decrease in myofibroblasts. The wounds covered with full thickness skin grafts had a minimum of contraction with a very rapid decrease in the number of myofibroblasts until by 4 weeks no myofibroblasts were present. Full-thickness skin grafts thus appeared to influence contracting wounds not by preventing the formation of myofibroblasts, but by speeding up completion of their life cycle.  相似文献   

15.
Wound healing in the skin is a complex biological process in which numerous types of cells, cytokines, growth factors, proteases and extracellular matrix components act in concert to restore the integrity of injured tissue. Cultivated allogenic human keratinocytes have been used for the treatment of various skin defects like burnwounds, surgical wounds, in exfoliative skin diseases and chronic wounds. A new method for wound healing enhancement in leg ulcers using cultured allogenic keratinocytes suspended in fibrin glue and used in spray technique is introduced. Allogenic keratinocytes are supposed to enhance granulation tissue production and to stimulate reepithelisation due to their release of growth factors and thus are able to recreate an active wound. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Dermal substitutes can be used to improve the wound healing of deep burns when placed underneath expanded, thin autologous skin grafts. Such dermal matrix material can be derived from xenogeneic or human tissue. Antigenic structures, such as cells and hairs must be removed to avoid adverse inflammatory response after implantation. In this study, a cost-effective method using low concentrations of NaOH for the de-cellularization of human donor skin preserved in 85% glycerol is described. The donor skin was incubated into NaOH for different time periods; 2, 4, 6 or 8 weeks. These dermal matrix prototypes were analyzed using standard histology techniques. Functional tests were performed in a rat subcutaneous implant model and in a porcine transplantation model; the prototypes were placed in full thickness excision wounds covered with autologous skin grafts. An incubation period of 6 weeks was most optimal, longer periods caused damage to the collagen fibers. Elastin fibers were well preserved. All prototypes showed intact biocompatibility in the rat model by the presence of ingrowing blood vessels and fibroblasts at 4 weeks after implantation. An inflammatory response was observed in the prototypes that were treated for only 2 or 4 weeks with NaOH. The prototypes treated with 6 or 8 weeks NaOH were capable to reduce wound contraction in the porcine model. In neo-dermis of these wounds, elastin fibers derived from the prototype could be observed at 8 weeks after operation, surrounded by more random orientated collagen fibers. Thus, using this effective low cost method, a dermal matrix can be obtained from human donor skin. Further clinical studies will be performed to test this material for dermal substitution in deep (burn) wounds.  相似文献   

17.
Wound healing (WH) impairment is a well-documented phenomenon in clinical and experimental diabetes. Sex hormones, in addition to a number of signaling pathways including transforming growth factor-β1 (TGF-β1)/Smads and TNF-α/NF-κB in macrophages and fibroblasts, appear to play a cardinal role in determining the rate and nature of WH. We hypothesized that a defect in resolution of inflammation and an enhancement in TNF-α/NF-κB activity induced by estrogen deficiency contribute to the impairment of TGF-β signaling and delayed WH in diabetes models. Goto-Kakizaki (GK) rats and full thickness excisional wounds were used as models for type 2 diabetes (T2D) and WH, respectively. Parameters related to the various stages of WH were assessed using histomorphometry, western blotting, real-time PCR, immunofluorescence microscopy and ELISA-based assays. Retarded re-epithelialization, suppressed angiogenesis, delayed wound closure, reduced estrogen level and heightened states of oxidative stress were characteristic features of T2D wounds. These abnormalities were associated with a defect in resolution of inflammation, shifts in macrophage phenotypes, increased β3-integrin expression, impaired wound TGF-β1 signaling (↓p-Smad2/↑Smad7) and enhanced TNF-α/NFκB activity. Human/rat dermal fibroblasts of T2D, compared to corresponding control values, displayed resistance to TGF-β-mediated responses including cell migration, myofibroblast formation and p-Smad2 generation. A pegylated form of soluble TNF receptor-1 (PEG-sTNF-RI) or estrogen replacement therapy significantly improved re-epithelialization and wound contraction, enhanced TGFβ/Smad signaling, and polarized the differentiation of macrophages toward an M2 or "alternatively" activated phenotype, while limiting secondary inflammatory-mediated injury. Our data suggest that reduced estrogen levels and enhanced TNF-α/NF-κB activity delayed WH in T2D by attenuating TGFβ/Smad signaling and impairing the resolution of inflammation; most of these defects were ameliorated with estrogen and/or PEG-sTNF-RI therapy.  相似文献   

18.
The object of this study was to examine the effect of high intensity, short duration pulsed electromagnetic fields (PEMF) on the healing of full thickness skin wounds in rats. Full thickness skin wounds were surgically created in two groups of Sprague-Dawley male rats. The rats were randomly divided into two groups, each containing 20 rats. Animals in the treatment group received treatments with the PEMF device on day 0, 3, 7, 9, 12, 14, 17, and 22, while the rats in the control group were subjected to the same procedure, but with the PEMF device not activated. Photographs of the surgically created wounds were obtained on day 0, 3, 7, 9, 12, 14, 17, and 22. Wound contraction (WC), wound epithelialization (WE), non-healed wound, and contraction-epithelialization (CE) ratio were calculated for each wound. No significant difference was found between the two groups for the parameters of WC, WE, non-healed wound, and CE ratio. A significant group x time interaction was found for WE and CE ratio. This type of PEMF did not have a significantly beneficial effect on wound healing. Wounds in the PEMF treated group were relatively less contracted and showed a compensatory increase in epithelialization in the early stages of wound repair.  相似文献   

19.
Chronic inflammation and excessive protease activity have a major role in the persistence of non-healing wounds. Granzyme B (GzmB) is a serine protease expressed during chronic inflammation that, in conjunction with perforin, has a well-established role in initiating apoptotic cell death. GzmB is also capable of acting extracellularly, independent of perforin and can degrade several extracellular matrix (ECM) proteins that are critical during wound healing. We used apolipoprotein E (ApoE) knockout (AKO) mice as a novel model of chronic inflammation and impaired wound healing to investigate the role of GzmB in chronic wounds. Wild-type and AKO mice were grown to 7 weeks (young) or 37 weeks (old) of age on a regular chow or high-fat diet (HFD), given a 1-cm diameter full thickness wound on their mid dorsum and allowed to heal for 16 days. Old AKO mice fed a HFD exhibited reduced wound closure, delayed contraction, chronic inflammation and altered ECM remodeling. Conversely, GzmB/ApoE double knockout mice displayed improved wound closure and contraction rates. In addition, murine GzmB was found to degrade both fibronectin and vitronectin derived from healthy mouse granulation tissue. In addition, GzmB-mediated degradation of fibronectin generated a fragment similar in size to that observed in non-healing mouse wounds. These results provide the first direct evidence that GzmB contributes to chronic wound healing in part through degradation of ECM.  相似文献   

20.
Treatment of diabetes-impaired wound healing remains a major unresolved medical challenge. Here, we identified suppressed formation of a novel reparative lipid mediator 14S,21R-dihydroxydocosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA) in cutaneous wounds of diabetic db/db mice. These results indicate that diabetes impedes the biosynthetic pathways of 14S,21R-diHDHA in skin wounds. Administration of exogenous 14S,21R-diHDHA to wounds in diabetic animals rescued healing and angiogenesis. When db/db mesenchymal stem cells (MSCs) were administered together with 14S,21R-diHDHA to wounds in diabetic animals, they coacted to accelerate wound re-epithelialization, granulation tissue formation, and synergistically improved vascularization. In the pivotal cellular processes of angiogenesis, 14S,21R-diHDHA enhanced VEGF release, vasculature formation, and migration of db/db dermal microvascular endothelial cells (DMVECs), as well as remedied paracrine angiogenic functions of db/db MSCs, including VEGF secretion and the promotion of DMVEC migration and vasculature formation. Our results show that 14S,21R-diHDHA activates the p38 MAPK pathway in wounds, db/db MSCs, and DMVECs. Overall, the impeded formation of 14S,21R-diHDHA described in this study suggests that diabetes could affect the generation of pro-healing lipid mediators in wound healing. By restoring wound healing and MSC functions, 14S,21R-diHDHA is a new lead for the development of better therapeutics used in treating wounds of diabetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号