首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Many eusocial insects, including ants, show complex colony structures, distributions, and reproductive strategies. In the ant Vollenhovia emeryi Wheeler (Hymenoptera: Myrmicinae), queens and males are produced clonally, while sterile workers arise sexually, unlike other ant species and Hymenopteran insects in general. Furthermore, there is a wing length polymorphism in the queen caste. Despite its evolutionary remarkable traits, little is known about the population structure of this ant species, which may provide insight into its unique reproductive mode and polymorphic traits. We performed in‐depth analyses of ant populations from Korea, Japan, and North America using three mitochondrial genes (COI, COII, and Cytb). The long‐winged (L) morph is predominant in Korean populations, and the short‐winged (S) morph is very rare. Interestingly, all L morphs were infected with Wolbachia, while all Korean S morphs lacked Wolbachia, demonstrating a association between a symbiont and a phenotypic trait. A phylogenetic analysis revealed that the S morph is derived from the L morph. We propose that the S morph is associated with potential resistance to Wolbachia infection and that Wolbachia infection does not influence clonal reproduction (as is the case in other ant species).  相似文献   

2.
The impact of climate change on the advancement of plant phenological events has been heavily studied in the last decade. Although the majority of spring plant phenological events have been trending earlier, this is not universally true. Recent work has suggested that species that are not advancing in their spring phenological behavior are responding more to lack of winter chill than increased spring heat. One way to test this hypothesis is by evaluating the behavior of a species known to have a moderate to high chilling requirement and examining how it is responding to increased warming. This study used a 60‐year data set for timing of leaf‐out and male flowering of walnut (Juglans regia) cultivar ‘Payne’ to examine this issue. The spring phenological behavior of ‘Payne’ walnut differed depending on bud type. The vegetative buds, which have a higher chilling requirement, trended toward earlier leaf‐out until about 1994, when they shifted to later leaf‐out. The date of male bud pollen shedding advanced over the course of the whole record. Our findings suggest that many species which have exhibited earlier bud break are responding to warmer spring temperatures, but may shift into responding more to winter temperatures (lack of adequate chilling) as warming continues.  相似文献   

3.
Alphaproteobacteria Wolbachia have been described as endosymbionts of approximately half of all aquatic insect species. These bacteria might affect not only reproduction but also the genetic diversity of its hosts. In the present study we identified Wolbachia endosymbiosis in freshwater true bug Aphelocheirus aestivalis F., 1794 (Heteroptera: Aphelocheiridae). Despite the fact that A. aestivalis is widely distributed in Europe, it occurs rather locally, often in isolated populations. Taking into account that Wolbachia, close relationships and past demographic phenomena could affect the genetic diversity of its host, we analyzed mitochondrial (COI and 16S) and nuclear (internal transcribed spacer 2) markers determined for A. aestivalis individuals collected from five populations. Moreover, we compared obtained COI sequences with those deposited in GenBank. Analyses revealed low genetic differentiation among samples tested, as well as low variation among determined COI sequences and those downloaded from the database. Although Wolbachia infection could correlate with decreasing mitochondrial diversity of its host, we suggest that low genetic variation observed in tested A. aestivalis samples (at both mitochondrial and nuclear levels) is a result of populations’ close relationships, past demographic phenomena or is characteristic for this species. Detailed analysis of the wsp gene fragment revealed two distinct strains of Wolbachia infecting A. aestivalis. Both of them belong to supergroup A, also found in other arthropods.  相似文献   

4.
5.
The bivoltine European map butterfly (Araschnia levana) displays seasonal polyphenism characterized by the formation of two remarkably distinct dorsal wing phenotypes: The spring generation (A. levana levana) is predominantly orange with black spots and develops from diapause pupae, whereas the summer generation (A. levana prorsa) has black, white, and orange bands and develops from subitaneous pupae. The choice between spring or summer imagoes is regulated by the photoperiod during larval and prepupal development, but polyphenism in the larvae has not been investigated before. Recently, it has been found that the prepupae of A. levana display differences in immunity‐related gene expression, so we tested whether larvae destined to become spring (short‐day) or summer (long‐day) morphs also display differences in innate immunity. We measured larval survival following the injection of a bacterial entomopathogen (Pseudomonas entomophila), the antimicrobial activity in their hemolymph and the induced expression of selected genes encoding antimicrobial peptides (AMPs). Larvae of the short‐day generation died significantly later, exhibited higher antibacterial activity in the hemolymph, and displayed higher induced expression levels of AMPs than those of the long‐day generation. Our study expands the seasonal polyphenism of A. levana beyond the morphologically distinct spring and summer imagoes to include immunological larval polyphenism that reveals the photoperiodic modulation of immunity. This may reflect life‐history traits that manifest as trade‐offs between immunity and fecundity.  相似文献   

6.
The spruce budworm (Choristoneura fumiferana) is the most destructive insect defoliator of forests in North America. Climatic influences on this species' life history are considered a major factor in restricting the extent and intensity of outbreaks. We examine the life history traits of the spruce budworm and related Choristoneura populations with respect to forecasting the conifer‐feeding responses of these insects in changing environments. Analysis of the evolutionary relationships between Choristoneura entities, including their hybridization, genetic distances, and their degree of sympatry leads us to distinguish 15 possible Choristoneura‘biotypes’. Population trend has been associated with recruitment to the feeding stage, and two indicators of recruitment, egg weights and phenological development, are both ‘biotype’ and climate dependent. Among Abietoid feeding ‘biotypes’ and among spruce budworm populations, those from locations with extreme winters tend to have heavier eggs than those from the more benign environments. In spruce budworm, this genetically based adaptation allows populations to increase their potential recruitment substantially where winters are mild. All biotypes feed on the newly developed shoots of their host trees in spring, and are thus vulnerable to the uncertain timing of budbreak. Genetic control of spring emergence is weak so larvae from a single family typically exit from hibernacula over a prolonged period. This guarantees some synchronization with budburst. However, hybrid populations have high heritabilities. This allows rapid adaptation to new conditions (e.g. mixed host‐species stands). Geographic variation in phenological development after establishing feeding sites is largely genetically controlled. The importance of variation in these traits is examined with respect to competing population dynamics theories to evaluate their utility in forecasting future trends in defoliation. We finish with a plea for jointly using alternative approaches in forecasting spatiotemporal patterns of defoliation.  相似文献   

7.
The aim of this investigation was to assess whether imposed summer shading treatments in apricot (Prunus armeniaca L.) can affect the main phenological phases related to the floral morphogenesis (floral differentiation, xylogenesis), flower bud growth and quality in terms of bud capacity to set fruit. Experimental trials were carried out on fully-grown trees of ‘San Castrese’ and ‘Stark Early Orange’ cultivars characterized by different biological and agronomical traits to which shadings were imposed in July and August. Histological analysis was carried out from summer onwards in order to determine the evolution of floral bud differentiation, and the acropetal progression of primary xylem differentiation along the flower bud axis. Periodical recordings to evaluate the bud drop, blooming time, flowering and fruit set rates were performed also. These shade treatments determined a temporary shutdown of floral differentiation, slowed xylem progression up to the resumption of flower bud growth and a reduced entity of flowering and fruit set. These events were particularly marked in ‘San Castrese’ cultivar, which is well known for its adaptability to different climatic conditions. These findings suggest that adequate light penetration within the canopy during the summer season could be the determining factor when defining the qualitative traits of flower buds and their regular growth, and ultimately to obtain good and constant crops.  相似文献   

8.
Seasonal polyphenisms are widespread in nature, yet the selective pressures responsible for their evolution remain poorly understood. Previous work has largely focussed either on the developmental regulation of seasonal polyphenisms or putative ‘top‐down’ selective pressures such as predation that may have acted to drive phenotypic divergence. Much less is known about the influence of seasonal variation in resource availability or seasonal selection on optimal resource allocation. We studied seasonal variation in resource availability, uptake and allocation in Araschnia levana L., a butterfly species that exhibits a striking seasonal colour polyphenism consisting of predominantly orange ‘spring form’ adults and black‐and‐white ‘summer form’ adults. ‘Spring form’ individuals develop as larvae in the late summer, enter a pupal diapause in the fall and emerge in the spring, whereas ‘summer form’ individuals develop directly during the summer months. We find evidence for seasonal declines in host plant quality, and we identify similar reductions in resource uptake in late summer, ‘spring form’ larvae. Further, we report shifts in the body composition of diapausing ‘spring form’ pupae consistent with a physiological cost to overwintering. However, these differences do not translate into detectable differences in adult body composition. Instead, we find minor seasonal differences in adult body composition consistent with augmented flight capacity in ‘summer form’ adults. In comparison, we find much stronger signatures of sex‐specific selection on patterns of resource uptake and allocation. Our results indicate that resource dynamics in A. levana are shaped by seasonal fluctuations in host plant nutrition, climatic conditions and intraspecific interactions.  相似文献   

9.
Discordance between entities revealed by nuclear versus mitochondrial genes is a common phenomenon in evolutionary and taxonomic studies. However, little attention has been paid to analysis of how such discordant entities correspond to traditional species detected through investigation of their morphology, ecology, and distribution. Here, we used one mitochondrial (COI, DNA barcode fragment) and four nuclear (CAD, Ca‐ATPase, arginine kinase, wg) genes to analyze the genetic structure of the taxonomically well‐studied butterfly genus Brenthis (Lepidoptera, Nymphalidae). Analysis of COI revealed multiple diverged allopatric and sympatric mitochondrial lineages within the known Brenthis species hinting at possible presence of unrecognized cryptic species. However, these multiple‐species hypotheses were not supported by further studies of nuclear genes and phenotypic traits. The discovered mitochondrial lineages did not correspond to the clusters revealed by nuclear genes. Simultaneously, we found a complete congruence between (a) traditional species boundaries, (b) clusters recognized by nuclear genes, and (c) clusters identified via cladistic analysis of phenotypic traits (genitalia and wing pattern characters, ecological preferences, and chromosome numbers). We conclude that in case of the genus Brenthis, nuclear genes rather than mtDNA barcodes reveal real species boundaries. Additionally, we suggest to support each DNA barcode‐based taxonomic conclusion by analysis of phased alleles of nuclear genes, avoiding widely used practice of nuclear and mitochondrial genes concatenation without any examination of interaction of these different types of data.  相似文献   

10.
Determining which factors contribute to the formation and maintenance of genetic divergence to evaluate their relative importance as a cause of biological differentiation is among the major challenges in evolutionary biology. In Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) two host strains have been recognized in the 1980s: the corn‐strain prefers maize, sorghum, and cotton, whereas the rice‐strain prefers rice and wild grasses. However, it is not clear to what extent these so‐called ‘strains’, which have also been called ‘host races’ or even ‘sibling species’, are really associated with host plants. Due to the indeterminate evolutionary status, we will use the term ‘host forms’ (sensu Funk). Here, we characterized populations collected from maize, rice, and wild grasses from three countries in South America. Using two mitochondrial cytochrome oxidase I (mtCOI) markers and 10 polymorphisms in the triose phosphate isomerase (Tpi) gene, we found various patterns of host association. Two hundred twenty‐seven nuclear amplified fragment length polymorphisms (AFLPs) markers revealed significant genetic differentiation among populations, which was generally correlated to the host from which the larvae were collected. Using a multivariate discriminant analysis and a Bayesian clustering approach, we found that individuals could be grouped into 2–5 genetically distinct clusters, depending on the method. Together, our results indicate that although host‐associated differentiation is present in this species, it does not account for all observable genetic variation and other factors must be maintaining genetic differentiation between these forms. Therefore, the term ‘host strains’ should be abandoned and ‘host forms’ should be used instead for S. frugiperda.  相似文献   

11.
The alfalfa weevil (Hypera postica) is a well‐known example of a worldwide‐distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.  相似文献   

12.
Understanding the genetic background of complex behavioral traits, showing multigenic control and extensive environmental effects, is a challenging task. Among such traits, migration is known to show a large additive genetic component. Yet, the identification of specific genes or gene regions explaining phenotypic variance in migratory behavior has received less attention. Migration ultimately depends on seasonal cycles, and polymorphism at phenological candidate genes may underlie variation in timing of migration or other aspects of migratory behavior. In this study of a Nearctic–Neotropical migratory songbird, the Wilson's warbler (Cardellina pusilla), we investigated the association between polymorphism at two phenological candidate genes, Clock and Adcyap1, and two aspects of the migratory phenotype, timing of spring migration through a stopover site and inferred latitude of the breeding destination. The breeding destination of migrating individuals was identified using feather deuterium ratio (δ2H), which reliably reflects breeding latitude throughout the species' western breeding range. Ninety‐eight percent of the individuals were homozygous at Clock, and the rare heterozygotes did not deviate from homozygous migration phenology. Adcyap1 was highly polymorphic, and allele size was not significantly associated with migration date. However, Adcyap1 allele size significantly positively predicted the inferred breeding latitude of males but not of females. Moreover, we found a strong positive association between inferred breeding latitude and Adcyap1 allele size in long‐distance migrating birds from the northern sector of the breeding range (western Canada), while this was not the case in short‐distance migrating birds from the southern sector of the breeding range (coastal California). Our findings support previous evidence for a role of Adcyap1 in shaping the avian migratory phenotype, while highlighting that patterns of phenological candidate gene–phenotype associations may be complex, significantly varying between geographically distinct populations and even between the sexes.  相似文献   

13.
Abstract The plethodontid salamander Desmognathus orestes, a member of the D. ochrophaeus species complex, is distributed in southwestern Virginia, eastern Tennessee, and western North Carolina. Previous allozyme analyses indicate that D. orestes consists of two distinct groups of populations (D. orestes‘B’ and D. orestes‘C’) with extensive intergradation and probable gene flow between these two groups. Spatially varying allele frequencies can reflect historical associations, current gene flow, or a combination of population‐level processes. To differentiate among these processes, we use multiple markers to further characterize divergence among populations of D. orestes and assess the degree of intergradation between D. orestes‘B’ and D. orestes‘C’, specifically investigating variation in allozymes, mitochondrial DNA (mtDNA), and reproductive behavior among populations. On a broad scale, the mtDNA genealogies reconstruct haplotype clades that correspond to the species identified from previous allozyme analyses. However, at a finer geographic scale, the distributions of the allozyme and mtDNA markers for D. orestes‘B’ and D. orestes‘C’ are discordant. MtDNA haplotypes corresponding to D. orestes‘B’ are more broadly distributed across western North Carolina than predicted by allozyme data, and the region of intergradation with D. orestes‘C’ indicates asymmetric gene flow of these markers. Asymmetric mating may contribute to observed discordance in nuclear versus cytoplasmic markers. Results support describing D. orestes as a single species and emphasize the importance of using multiple markers to examine fine‐scale patterns and elucidate evolutionary processes affecting gene flow when making species‐level taxonomic decisions.  相似文献   

14.
Genetic differentiation between co-occurring crops and their wild relatives will be greatly modified by crop-to-weed gene flow and variation between human and natural selective pressures. The maintenance of original morphological features in most natural populations of Medicago sativa in Spain questions the relative extent of these antagonistic forces. In this paper, we measured and compared the pattern of population differentiation within and among the wild and cultivated gene pool with respect to both allozymes and quantitative traits. Patterns of diversity defined three kinds of natural populations. First, some populations were intermediate with respect to both allozymes and quantitative traits. This suggests that crop-to-weed gene flow may have created hybrid populations in some locations. Second, some populations were different from all the cultivated landraces with respect to both allozymes and quantitative traits. This probably results from variable gene flow in space and in time, due to demographic stochasticity in either natural or cultivated populations. Third, differentiation from cultivated landraces was only achieved for the quantitative traits but not for allozymes in two populations. This suggests that natural selection in some locations may oppose gene flow to establish cultivated traits into the natural introgressed populations.  相似文献   

15.
Wing melanin pattern varies seasonally among generations in many populations of the butterfly Pontia occidentalis, leading to distinctly different wing phenotypes during spring and summer generations. Estimates of directional selection on wing pattern can therefore quantify the imperfection of this phenotypically plastic (polyphenic) response in generating “optimal” phenotypes for each seasonal generation. Mark-release-recapture (MRR) studies were used to estimate directional selection on six wing traits in a natural population of P. occidentalis during both spring and summer weather conditions. Estimated survival and recapture probabilities varied substantially among the four MRR studies. When differences between males and females were detected, the survival and recapture probabilities were higher for males than for females. Estimated selection coefficients suggested that the direction of selection on one wing trait important for thermoregulation, melanin on the base of the dorsal hindwings (trait hb), fluctuated seasonally; there was evidence of directional selection for increased hb in the spring studies and for decreased hb in the summer studies. Such fluctuating seasonal selection on hb implies that the seasonal polyphenic response may not be sufficient to eliminate selection on this trait; the slope of the reaction-norm mapping hb onto seasonal environmental cues is too shallow, resulting in further selection on the reaction norm. Adaptive evolution of the reaction norm may be constrained by phenotypic and genetic correlations with other wing traits that experience different patterns of selection and by variable weather conditions within seasons and among years.  相似文献   

16.
The satyrine butterfly Coenonympha tullia (Nymphalidae: Satyrinae) displays a deep split between two mitochondrial clades, one restricted to northern Alberta, Canada, and the other found throughout Alberta and across North America. We confirm this deep divide and test hypotheses explaining its phylogeographic structure. Neither genitalia morphology nor nuclear gene sequence supports cryptic species as an explanation, instead indicating differences between nuclear and mitochondrial genome histories. Sex‐biased dispersal is unlikely to cause such mito‐nuclear differences; however, selective sweeps by reproductive parasites could have led to this conflict. About half of the tested samples were infected by Wolbachia bacteria. Using multilocus strain typing for three Wolbachia genes, we show that the divergent mitochondrial clades are associated with two different Wolbachia strains, supporting the hypothesis that the mito‐nuclear differences resulted from selection on the mitochondrial genome due to selective sweeps by Wolbachia strains.  相似文献   

17.
Molecular genetics and symbiont diagnostics have revolutionized our understanding of insect species diversity, and the transformative effects of bacterial symbionts on host life history. Encarsia inaron is a parasitoid wasp that has been shown to harbour two bacterial endosymbionts, Wolbachia and Cardinium. Known then as E. partenopea, it was introduced to the USA in the late 1980s from populations collected in Italy and Israel for the biological control of an ornamental tree pest, the ash whitefly, Siphoninus phillyreae. We studied natural populations from sites in the USA, the Mediterranean and the Middle East as well as from a Cardinium‐infected laboratory culture established from Italy, with the aims of characterizing these populations genetically, testing reproductive isolation, determining symbiont infection status in their native and introduced range, and determining symbiont role. The results showed that the two Encarsia populations introduced to the USA are genetically distinct, reproductively isolated, have different symbionts and different host–symbiont interactions, and can be considered different biological species. One (‘E. inaron’) is doubly infected by Wolbachia and Cardinium, while only Cardinium is present in the other (‘E. partenopea’). The Cardinium strains in the two species are distinct, although closely related, and crossing tests indicate that the Cardinium infecting ‘E. partenopea’ induces cytoplasmic incompatibility. The frequency of symbiont infection found in the native and introduced range of these wasps was similar, unlike the pattern seen in some other systems. These results also lead to a retelling of a successful biological control story, with several more characters than had been initially described.  相似文献   

18.
Since genetic variation is the basis of evolutionary potential of a species, its structure needs to be understood. Thus, the aim of this study was to analyze and contrast the structure of genetic and phenotypic variation in the Euphydryas aurinia populations of southeastern central Europe. Genetic variation was studied by two types of molecular genetic markers: mtDNA COI sequences and allozymes. As the great hiatus in the European distribution of E. aurinia is located in the central part of the Carpathian Basin, we expected that the populations East and West to this gap would be highly differentiated. Populations of Central Transdanubia actually represent the easternmost margin of the West European distribution of E. aurinia. In view of the peripheral position of these populations, we supposed to find some genetic sign of local adaptation, as a consequence of diversifying selection and an increased level of fluctuating asymmetry as a result of environmental stress. The analyses of the molecular genetic markers revealed a basic East–West differentiation among the populations of southeastern central Europe which was further structured in the western part of the study area. The results suggested that the genetic differentiation between the two western regions is probably the consequence of diversifying selection. The pattern of phenotypic differentiation among the western populations, however, was different. A geographic cline was revealed (decreasing wing size) toward the eastern margin of the distribution in parallel with increasing fluctuating asymmetry. The conservation inferences of the results are considered.  相似文献   

19.
Patterns of genetic and morphometric differentiation were surveyed in Melitaea (Mellicta) athalia populations of the Carpathian Basin. This species has a wide distribution and exists under a wide variety of ecological conditions. It has two ecotypes in Hungary: with either one or two broods per year. It is of particular interest to reveal the main factors driving differentiation patterns in this species. Samples in our study were obtained from five Hungarian and one Transylvanian (Romanian) regions. Enzyme polymorphism, wing characters and male external genitalia were analysed using traditional morphometric methods. Statistical methods were optimized to compare morphological and genetic data. The results of genetic surveys revealed a clear regional pattern of differentiation in M. athalia. Moreover, the results of principal component analysis, Bayesian clustering and the dendrogram all suggested that the regions can be classified into two groups corresponding to the East or West zones of the Carpathian Basin. In contrast, differentiation between the two ecotypes was less expressed in the genetic variation of M. athalia. Results of the analyses conducted on phenotypic variation also suggested a regional pattern for both sets of morphometric characters (wings and external genitalia). At the same time, neither East–West regional division nor ecotype differentiation was detected in the morphometric studies. In sum, our analyses confirmed that both genetic and phenotypic variations of M. athalia exhibit a regional pattern rather than the differentiation between the two ecotypes. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号