首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
exo mutants of Rhizobium meliloti SU47, which fail to secrete acidic extracellular polysaccharide (EPS), induce Fix- nodules on alfalfa. However, mutants of R. meliloti Rm41 carrying the same exo lesions induce normal Fix+ nodules. We show that such induction is due to a gene from strain Rm41, which we call lpsZ+, that is missing in strain SU47. lpsZ+ does not restore EPS production but instead alters the composition and structure of lipopolysaccharide. In both SU47 and Rm41, either lpsZ+ or exo+ is sufficient for normal nodulation. This suggests that in R. meliloti EPS and lipopolysaccharide can perform the same function in nodule development.  相似文献   

2.
General transduction in Rhizobium meliloti   总被引:13,自引:28,他引:13       下载免费PDF全文
General transduction by phage phi M12 in Rhizobium meliloti SU47 and its derivatives is described. Cotransduction and selection for Tn5 insertions which are closely linked to specific loci were demonstrated. A derivative of SU47 carrying the recA::Tn5 allele of R. meliloti 102F34 could be transduced for plasmid R68.45 but not for chromosomally located alleles. Phage phi M12 is morphologically similar to Escherichia coli phage T4, and restriction endonuclease analysis indicated that the phage DNA was ca. 160 kilobases in size.  相似文献   

3.
The gene encoding a denitrification enzyme, nitrous oxide reductase (EC 1.7.99.6), in Rhizobium meliloti and other gram-negative bacteria was detected by hybridization to an internal 1.2-kb PstI fragment of the structural gene (nosZ) cloned from Pseudomonas stutzeri Zobell (W.G. Zumft, A. Viebrock-Sambale, and C. Braun, Eur. J. Biochem. 192:591-599, 1990). Homology to the probe was detected in the DNAs of two N2-fixing strains of P. stutzeri, two denitrifying Pseudomonas species, one Alcaligenes eutrophus strain, and 36 of 56 R. meliloti isolates tested. Except for two isolates of R. meliloti, all showed nitrous oxide reduction activity (Nos+). Therefore, at least part of the nosZ sequence appears to be conserved and widely distributed among denitrifiers, which include free-living and symbiotic diazotrophs. By using Agrobacterium tumefaciens transconjugants harboring different megaplasmids of R. meliloti JJ1c10 and SU47, sequence homology with the nosZ probe was unequivocally located on the nod megaplasmid. A cosmid clone of JJ1c10 in which nosZ homology was mapped on a 4.2-kb BamHI fragment was selected. This cosmid, which conferred Nos+ activity to the R. meliloti wild-type strains ATCC 9930 and Balsac (Nos- and nondenitrifying, respectively) also restored Nos+ activity in the mutants of JJ1c10 and SU47 in which the 4.2-kb BamHI segment was deleted. Therefore, this segment contains sequences essential for nos gene expression in JJ1c10 and SU47 and thus confirms that the nod megaplasmid in JJ1c10 and SU47 which carries genes essential for symbiotic dinitrogen fixation also carries genes involved in the antagonistic process of denitrification.  相似文献   

4.
Mutants of Rhizobium meliloti defective in succinate metabolism.   总被引:23,自引:13,他引:10       下载免费PDF全文
We characterized mutants of Rhizobium meliloti SU47 that were unable to grow on succinate as the carbon source. The mutants fell into five groups based on complementation of the succinate mutations by individual recombinant plasmids isolated from a R. meliloti clone bank. Enzyme analysis showed that mutants in the following groups lacked the indicated common enzyme activities: group II, enolase (Eno); group III, phosphoenolpyruvate carboxykinase (Pck); group IV, glyceraldehyde-3-phosphate dehydrogenase (Gap), and 3-phosphoglycerate kinase (Pgk). Mutants in groups I and V lacked C4-dicarboxylate transport (Dct-) activity. Wild-type cells grown on succinate as the carbon source had high Pck activity, whereas no Pck activity was detected in cells that were grown on glucose as the carbon source. It was found that in free-living cells, Pck is required for the synthesis of phosphoenolpyruvate during gluconeogenesis. In addition, the enzymes of the lower half of the Embden-Meyerhoff-Parnas pathway were absolutely required for gluconeogenesis. Eno, Gap, Pck, and one of the Dct loci (ntrA) mapped to different regions of the chromosome; the other Dct locus was tightly linked to a previously mapped thi locus, which was located on the megaplasmid pRmeSU47b.  相似文献   

5.
6.
Rhizobium meliloti SU47 and Rhizobium sp. strain NGR234 produce distinct exopolysaccharides that have some similarities in structure. R. meliloti has a narrow host range, whereas Rhizobium strain NGR234 has a very broad host range. In cross-species complementation and hybridization experiments, we found that several of the genes required for the production of the two polysaccharides were functionally interchangeable and similar in evolutionary origin. NGR234 exoC and exoY corresponded to R. meliloti exoB and exoF, respectively. NGR234 exoD was found to be an operon that included genes equivalent to exoM, exoA, and exoL in R. meliloti. Complementation of R. meliloti exoP, -N, and -G by NGR234 R'3222 indicated that additional equivalent genes remain to be found on the R-prime. We were not able to complement NGR234 exoB with R. meliloti DNA. In addition to functional and evolutionary equivalence of individual genes, the general organization of the exo regions was similar between the two species. It is likely that the same ancestral genes were used in the evolution of both exopolysaccharide biosynthetic pathways and probably of pathways in other species as well.  相似文献   

7.
Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation   总被引:2,自引:0,他引:2  
Among the genes of Rhizobium meliloti SU47 that affect nitrogen-fixing symbiosis with alfalfa are nod genes, in which mutations block nodule induction, and exo genes, in which mutations allow nodule formation but block rhizobial exopolysaccharide production as well as nodule invasion and nitrogen fixation. To investigate whether an exo+ bacterium can "help" (that is, reverse the symbiotic defect of) an exo mutant in trans, we have coinoculated alfalfa with pairs of rhizobia of different genotypes. Coinoculant genotypes were chosen so that the exo+ helper strain was nif while the exo "indicator" strain was nif+, and thus any fixation observed was carried out by the exo coinoculant. We find that a nod exo+ coinoculant can help an exo mutant both to invade nodules and to fix nitrogen. However, a nod+ exo+ coinoculant cannot help an exo mutant: Few exo bacteria are recovered from nodules, some bacteroids differentiate into bizarre aberrant forms, and the nodules fail to fix nitrogen. In a triple coinoculation, the effect of nod+ helper supersedes that of nod helper. Implications of these results for interaction of nod and exo gene products are discussed.  相似文献   

8.
A fix region of Rhizobium meliloti 41 involved both in symbiotic nodule development and in the adsorption of bacteriophage 16-3 was delimited by directed Tn5 mutagenesis. Mutations in this DNA region were assigned to four complementation units and were mapped close to the pyr-2 and pyr-29 chromosomal markers. Phage inactivation studies with bacterial cell envelope preparations and crude lipopolysaccharides (LPS) as well as preliminary characterization of LPS in the mutants indicated that these genes are involved in the synthesis of a strain-specific LPS. Mutations in this DNA region resulted in a Fix- phenotype in AK631, an exopolysaccharide (EPS)-deficient derivative of R. meliloti 41; however, they did not influence the symbiotic efficiency of the parent strain. An exo region able to restore the EPS production of AK631 was isolated and shown to be homologous to the exoB region of R. meliloti SU47. By generating double mutants, we demonstrated that exo and lps genes determine similar functions in the course of nodule development, suggesting that EPS and LPS may provide equivalent information for the host plant.  相似文献   

9.
10.
The production of the Sinorhizobium meliloti exopolysaccharide, succinoglycan, is required for the formation of infection threads inside root hairs, a critical step during the nodulation of alfalfa (Medicago sativa) by S. meliloti. Two bacterial mutations, exoR95::Tn5 and exoS96::Tn5, resulted in the overproduction of succinoglycan and a reduction in symbiosis. Systematic analyses of the symbiotic phenotypes of the two mutants demonstrated their reduced efficiency of root hair colonization. In addition, both the exoR95 and exoS96 mutations caused a marked reduction in the biosynthesis of flagella and consequent loss of ability of the cells to swarm and swim. Succinoglycan overproduction did not appear to be the cause of the suppression of flagellum biosynthesis. Further analysis indicated that both the exoR95 and exoS96 mutations affected the expression of the flagellum biosynthesis genes. These findings suggest that both the ExoR protein and the ExoS/ChvI two-component regulatory system are involved in the regulation of both succinoglycan and flagellum biosynthesis. These findings provide new avenues of understanding of the physiological changes S. meliloti cells go through during the early stages of symbiosis and of the signal transduction pathways that mediate such changes.  相似文献   

11.
The insertion sequence ISRm3 was discovered simultaneously in different Rhizobium meliloti strains by probing Southern blots of total cellular DNA with 32P-labeled pTA2. This plasmid is indigenous to strain IZ450 and fortuitously contained four copies of ISRm3. By using an internal EcoRI fragment as a specific probe (pRWRm31), homology to ISRm3 was subsequently detected in over 90% of R. meliloti strains tested from different geographical locations around the world. The frequency of stable nonlethal ISRm3 transpositions was estimated to be 4 x 10(-5) per generation per cell in strain SU47 when grown in liquid culture. The entire nucleotide sequence of ISRm3 in R. meliloti 102F70 is 1,298 bp and has 30-bp terminal inverted repeats which are perfectly matched. Analysis of six copies of ISRm3 in two strains showed that a variable number of base pairs (usually eight or nine) were duplicated and formed direct repeats adjacent to the site of insertion. On one DNA strand, ISRm3 contains an open reading frame spanning 93% of its length. Comparison of the putative protein encoded with sequences derived from the EMBL and GenBank databases showed significant similarity between the putative transposases of ISRm3 from R. meliloti, IS256 from Staphylococcus aureus, and IST2 from Thiobacillus ferroxidans. These insertion sequences appear to be distantly related members of a distinct class.  相似文献   

12.
Using physical and genetic data, we have demonstrated that Rhizobium meliloti SU47 has a symbiotic megaplasmid, pRmeSU47b, in addition to the previously described nod-nif megaplasmid pRmeSU47a. This plasmid includes four loci involved in exopolysaccharide (exo) synthesis as well as two loci involved in thiamine biosynthesis. Mutations at the exo loci have previously been shown to result in the formation of nodules which lack infection threads (Inf-) and fail to fix nitrogen (Fix-). Thus, both megaplasmids contain genes involved in the formation of nitrogen-fixing root nodules. Mutations at two other exo loci were not located on either megaplasmid. To mobilize the megaplasmids, the oriT of plasmid RK2 was inserted into them. On alfalfa, Agrobacterium tumefaciens strains containing pRmeSU47a induced marked root hair curling with no infection threads and Fix- nodules, as reported by others. This plant phenotype was not observed to change with A. tumefaciens strains containing both pRmeSU47a and pRmeSU47b megaplasmids, and strains containing pRmeSU47b alone failed to curl root hairs or form nodules.  相似文献   

13.
Mutations have been identified in Saccharomyces cerevisiae glycine tRNA genes that result in suppression of +1 frameshift mutations in glycine codons. Wild-type and suppressor alleles of genes encoding the two major glycine tRNAs, tRNA(GCC) and tRNA(UCC), were examined in this study. The genes were identified by genetic complementation and by hybridization to a yeast genomic library using purified tRNA probes. tRNA(UCC) is encoded by three genes, whereas approximately 15 genes encode tRNA(GCC). The frameshift suppressor genes suf1+, suf4+ and suf6+ were shown to encode the wild-type tRNA(UCC) tRNA. The suf1+ and suf4+ genes were identical in DNA sequence, whereas the suf6+ gene, whose DNA sequence was not determined, was shown by a hybridization experiment to encode tRNA(UCC). The ultraviolet light-induced SU F1-1 and spontaneous SU F4-1 suppressor mutations were each shown to differ from wild-type at two positions in the anticodon, including a +1 base-pair insertion and a base-pair substitution. These changes resulted in a CCCC four-base anticodon rather than the CCU three-base anticodon found in wild-type. The RNA sequence of tRNA(UCC) was shown to contain a modified uridine in the wobble position. Mutant tRNA(CCCC) isolated from a SU F1-1 strain lacked this modification. Three unlinked genes that encode wild-type tRNA(GCC), suf20+, trn2, and suf17+, were identical in DNA sequence to the previously described suf16+ frameshift suppressor gene. Spontaneous suppressor mutations at the SU F20 and SU F17 loci were analyzed. The SU F20-2 suppressor allele contained a CCCC anticodon. This allele was derived in two serial selections through two independent mutational events, a +1 base insertion and a base substitution in the anticodon. Presumably, the original suppressor allele, SU F20-1, contained the single base insertion. The SU F17-1 suppressor allele also contained a CCCC anticodon resulting from two mutations, a +1 insertion and a base substitution. However, this allele contained an additional base substitution at position 33 adjacent to the 5' side of the four-base anticodon. The possible origin and significance of multiple mutations leading to frameshift suppression is discussed.  相似文献   

14.
A series of 120-600 kilobase deletions with defined endpoints were made in the 1600-kilobase Rhizobium meliloti megaplasmid pRmeSU47b, by homologous recombination between the IS50 elements of transposon insertions. Utilizing IS 50-mediated homologous recombination we also made defined reductions in deletion size and combined adjacent deletions. Deletion structure was confirmed by phage transduction and Southern hybridization analysis. Collectively these deletions span 1400 kilobases of pRmeSU47b, indicating that the majority of the plasmid is not essential for cell viability. This was further confirmed by the construction of a strain SU47 derivative which carries only 450 kilobases of the pRmeSU47b megaplasmid. Examination of the deletion mutants for phenotype revealed novel loci required for dulcitol, melibiose, raffinose, beta-hydroxybutyrate, acetoacetate, protocatechuate and quinate utilization. Previously unidentified loci required for effective root nodule development and exopolysaccharide synthesis were also found. Various deletion mutants were deficient in dicarboxylate transport, lactose utilization, and thiamine and exopolysaccharide biosynthesis, as predicted from earlier studies of this megaplasmid.  相似文献   

15.
Spontaneous mutants at a new symbiotic locus in Rhizobium meliloti SU47 are resistant to several phages and are conditionally insensitive to a monoclonal antibody to the bacterial surface, apparently because they are deficient in a wild-type exopolysaccharide. On alfalfa, the mutants do not curl root hairs, but penetrate the epidermis directly, forming nodules that contain no visible infection threads or "bacteroids," have a few bacteria in superficial intercellular spaces only and not within the nodule cells, and fail to fix nitrogen (Fix-). Evidently, infection threads are not essential for cell proliferation and nodule formation, which are here induced by a bacterial signal at a distance and uncoupled from the bacterial differentiation that normally goes on as well.  相似文献   

16.
H J Zhan  C C Lee    J A Leigh 《Journal of bacteriology》1991,173(22):7391-7394
In previous work, Rhizobium meliloti SU47 produced its alternative exopolysaccharide (EPSb [also called EPS II]) only in strains that were genetically altered to activate EPSb synthesis. Here we report that EPSb synthesis is not entirely cryptic but occurred under conditions of limiting phosphate. This was shown in several different exo mutants that are blocked in the synthesis of the normal exopolysaccharide, succinoglycan. In addition, EPSb biosynthetic gene expression was markedly increased by limiting phosphate. An apparent regulatory mutant that does not express alkaline phosphatase activity was unable to produce EPSb under these conditions. A mucR mutant that was previously shown to produce EPSb instead of the normal exopolysaccharide, succinoglycan, was not sensitive to phosphate inhibition of EPSb synthesis. No evidence was found to indicate that exoX, which affects succinoglycan synthesis, had any influence on EPSb synthesis. In contrast to limiting phosphate, limiting nitrogen or sulfur did not stimulate EPSb synthesis as it does succinoglycan.  相似文献   

17.
A low concentration of yeast extract (0·1%) in liquid media favoured rapid growth and high percentage of viable cells in cultures of Rhizobium japonicum (CB 1809), R. lupini (WU 425), R. meliloti (SU 47), R. trifolii (TA1) and a cowpea strain (CB 756). Concentrations of yeast extract > 0·35% depressed viability and produced distorted cells in all strains except SU 47: TA1 was especially sensitive. When used at 0·5–1% (w/v), each yeast extract (Difco, Oxoid, Vegemite) or casein hydrolysate produced greatly enlarged abnormal cells of TA1, each containing several granules of poly-β-hydroxybutyrate and whorls of intracytoplasmic membranes, and showing greater internal disorganisation than that seen in root nodule bacteroids. Lysogenic and non-lysogenic cultures of R. trifolii were all sensitive to yeast extract, and such sensitivity, for strains of several species, was unrelated to effectiveness in nodulating host plants. Glycine inhibited growth of all strains tested. Several other amino acids occurring in casein hydrolysate inhibited TA1 strongly and induced formation of distorted cells and spheroplasts; this distortion was partly counteracted by adding salts of calcium or magnesium. In media with 0·1% yeast extract the use of mannitol, sucrose, lactose or galactose as alternative carbon sources, each at a concentration of 0·02–1%, did not affect numbers of viable rhizobia or cell shape in all strains tested.  相似文献   

18.
S Long  S McCune    G C Walker 《Journal of bacteriology》1988,170(9):4257-4265
We have developed a system for using TnphoA (TnphoA is Tn5 IS50L::phoA), which generates fusions to alkaline phosphatase (C. Manoil and J. Beckwith, Proc. Natl. Acad. Sci. USA 82:8129-8133, 1985), in Rhizobium meliloti. Active fusions expressing alkaline phosphatase can arise only when this transposon inserts in genes encoding secreted or membrane-spanning proteins. By confining our screening to 1,250 TnphoA-generated mutants of R. meliloti that expressed alkaline phosphatase, we efficiently identified 25 symbiotically defective mutants, all of which formed ineffective (Fix-) nodules on alfalfa. Thirteen of the mutants were unable to synthesize an acidic exopolysaccharide (exo::TnphoA) that is required for nodule invasion. Twelve of the mutations created blocked at later stages of nodule development (fix::TnphoA) and were assigned to nine symbiotic loci. One of these appeared to be a previously undescribed locus located on the pRmeSU47a megaplasmid and to encode a membrane protein. Two others were located on the pRmeSU47b megaplasmid: one was a new locus which was induced by luteolin and encoded a membrane protein, and the other was dctA, the structural gene for dicarboxylic acid transport. The remaining six loci were located on the R. meliloti chromosome. One of these was inducible by luteolin and encoded a membrane protein which determined lipopolysaccharide structure. Three additional chromosomal loci also appeared to encode membrane proteins necessary for symbiosis. The remaining two chromosomal loci encoded periplasmic proteins required for symbiosis.  相似文献   

19.
To differentiate among the roles of the three nodD genes of Rhizobium meliloti 1021, we studied the activation of a nodC-lacZ fusion by each of the three nodD genes in response to root exudates from several R. meliloti host plants and in response to the flavone luteolin. We found (i) that the nodD1 and nodD2 products (NodD1 and NodD2) responded differently to root exudates from a variety of hosts, (ii) that NodD1 but not NodD2 responded to luteolin, (iii) that NodD2 functioned synergistically with NodD1 or NodD3, (iv) that NodD2 interfered with NodD1-mediated activation of nodC-lacZ in response to luteolin, and (v) that a region adjacent to and upstream of nodD2 was required for NodD2-mediated activation of nodC-lacZ. We also studied the ability of each of the three R. meliloti nodD genes to complement nodD mutations in R. trifolii and Rhizobium sp. strain NGR234. We found (i) that nodD1 complemented an R. trifolii nodD mutation but not a Rhizobium sp. strain NGR234 nodD1 mutation and (ii) that R. meliloti nodD2 or nodD3 plus R. meliloti syrM complemented the nodD mutations in both R. trifolii and Rhizobium sp. strain NGR234. Finally, we determined the nucleotide sequence of the R. meliloti nodD2 gene and found that R. meliloti NodD1 and NodD2 are highly homologous except in the C-terminal region. Our results support the hypothesis that R. meliloti utilizes the three copies of nodD to optimize the interaction with each of its legume hosts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号