首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In extracts of human platelets, three isoenzymes of cyclic nucleotide phosphodiesterase (PDE), namely, PDE2, PDE3, and PDE5, were identified; activities of PDE1 and PDE4 were not detected. In human platelets, the cGMP-hydrolytic activity was about six times higher than the cAMP-hydrolytic activity, and PDE5 and PDE3 are the major phosphodiesterase isoenzymes that hydrolyze cGMP and CAMP, respectively. PDE5 exhibited organ-specific expression in humans, and platelets were among the tissues richest in PDE5. A novel inhibitor of PDE5, sodium 1-[6-chloro-4-(3,4-methylenedioxybenzyl)aminoquinazolin-2-yl] piperidine-4-carboxylate sesquihydrate (E4021), was a potent and highly selective inhibitor of human platelet PDE5. However, E4021 (up to 10 μM) did not inhibit 9,11-epithio-11,12-methano-thromboxane A2-induced platelet aggregation, in vitro. E4021 plus SIN-1 (3-morpholino-sydnonimine), at concentrations that had little effect individually, inhibited aggregation. These results suggest the unique distribution of phosphodiesterase isoenzymes in human platelets and the PDE5 inhibitors might be useful as a new class of antiplatelet drugs.  相似文献   

2.
In an effort to develop potent antiplatelet agents, 12 O-prenylated (2–13) and 10 O-allylated (14–23) chalcones were synthesized and screened for in vitro inhibitory effects on aggregation of washed rabbit platelets induced by ADP (20 μM) and collagen (10 μg/mL). In addition, the platelet aggregation activity of previously synthesized Mannich bases of heterocyclic chalcones (MBHC) (24–62) was evaluated. The preliminary structure–activity relationships suggested that the antiplatelet activity was governed to a great extent by the presence of a pyridyl ring-B and a hydroxy group at position C-3′ in ring-A of the MBHC templates.  相似文献   

3.
In the present paper, a novel series of dibenzofuran-piperazine derivatives were synthesized via the treatment of N-(2-methoxy-3-dibenzofuranyl)-2-chloroacetamide with substituted piperazine derivatives. The chemical structures of the compounds were elucidated by 1H NMR, 13C NMR, mass spectral data; elemental analysis and HPLC analysis. Each derivative was evaluated for antiplatelet activity and anticholinesterase activity. Compound 2?m with 2-furoyl moiety exhibited high percentage inhibition as much as standard drug aspirin on arachidonic acid (AA)-induced platelet aggregation. None of the compounds presented significant inhibitor effect on collagen-induced platelet aggregation. Furthermore, the anticholinesterase activity of the compounds was determined and they did not show promising inhibitor activity compared with standard drug donepezil.  相似文献   

4.
C Pan  X Wei  J Ye  G Liu  S Zhang  Y Zhang  H Du  Z Ding 《PloS one》2012,7(7):e40451
In this study, we report BF066, a novel adenine derivative, inhibits platelet activation and thrombosis via the adenosine receptor (A(2A)) activation and phosphodiesterase (PDE) inhibition. BF066 inhibits platelet aggregation and ATP releasing induced by multiple platelet agonists in a dose-dependent manner. The inhibition of BF066 on ADP-induced aggregation is potentiated by adenosine and can be dramatically antagonized by the A(2A) antagonist SCH58261. BF066 also inhibits the PDE activity and platelet spreading on fibrinogen. In FeCl(3)-injured mouse mesenteric arterial thrombosis model, BF066 prevents thrombus formation effectively, similar to clopidogrel. Intriguingly, at dose achieving similar antithrombotic effect compared to clopidogrel, BF066 does not increase bleeding significantly. Taken together, these results suggest that BF066 may be an effective and safe antiplatelet agent targeting both PDE and A(2A). Considering the successful use of combined antiplatelet therapy, BF066 may be further developed as a novel dual target antiplatelet agent.  相似文献   

5.
Background/PurposeJuglone, a natural compound widely found in Juglandaceae plants, has been suggested as a potential drug candidate for treating cancer, inflammation, and diabetic vascular complications. In the present study, the antiplatelet effect and underlying mechanisms of juglone were investigated for the first time.Study design/methodsHuman platelet aggregation and activation were measured by turbidimetric aggregometry, flow cytometry, and Western blotting. In vitro antithrombotic activity of juglone was assessed using collagen-coated flow chambers under whole-blood flow conditions. The effect of juglone on protein disulfide isomerase (PDI) activity was determined by the dieosin glutathione disulfide assay.ResultsJuglone (1 – 5 μM) inhibited platelet aggregation and glycoprotein (GP) IIb/IIIa activation caused by various agonists. In a whole blood flow chamber system, juglone reduced thrombus formation on collagen-coated surfaces under arterial shear rates. Juglone abolished intracellular Ca2+ elevation and protein kinase C activation caused by collagen, but had no significant effect on that induced by G protein-coupled receptor agonists. In contrast, Akt activation caused by various agonists were inhibited in juglone-treated platelets. Additionally, juglone showed inhibitory effects on both recombinant human PDI and platelet surface PDI at concentrations similar to those needed to prevent platelet aggregation.ConclusionJuglone exhibits potent in vitro antiplatelet and antithrombotic effects that are associated with inhibition of Akt activation and platelet surface PDI activity.  相似文献   

6.
In an effort to develop potent antiplatelet agents, a series of trihydroxychalcones was synthesized and screened in vitro for their inhibitory effects on washed rabbit platelet aggregation induced by arachidonic acid (100 microM) and collagen (10 microg/ml). Of five compounds with potent inhibitory effects on arachidonic acid- and collagen-induced platelet aggregation, compound 4e was found to be the most potent. The structure-activity relationships suggested that antiplatelet activity was governed to a greater extent by the substituent on B ring of the chalcone template, and most of the active compounds had methoxy or dimethoxy groups on B ring.  相似文献   

7.
Abstract

A series of new 2-alkynyl, 2-cycloalkynyl, and 2-aralkynyl derivatives of adenosine-5′-ethyluronamide (NECA) were synthesized and evaluated in binding studies and functional assays to assess their potency and selectivity at A2 vs A1 receptors. The new derivatives were also tested as inhibitors of rabbit platelet aggregation induced by ADP. While the presence of an aromatic or heteroaromatic ring conjugated to the triple bond decreased antiplatelet activity, the introduction of a hydroxyl group or a heterocyclic ring on the alkynyl side chain increased the antiaggregatory activity in comparison with NECA, resulting in the most potent inhibitors of platelet aggregation so far known in the nucleoside series. However, the presence of an α-quaternary carbon markedly reduced the antiaggregatory potency without affecting the A2 binding affinity, suggesting that the platelet receptor is not a typical A2a site.  相似文献   

8.
This paper describes the design, synthesis and pharmacological evaluation of new N-acylhydrazone (NAH) compounds, belonging to the N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone class (2a-p). Classical heteroaromatic ring bioisosterism strategies were applied to the previously reported N-phenylpyrazolyl-4-acylhydrazone derivative 1, elected as lead-compound due to its important anti-aggregating profile on arachidonic acid induced platelet aggregation (IC(50)=24+/-0.5 micro M), from which emerge this new series 2. These new compounds 2a-p were readily synthesized, characterized and tested on platelet aggregation assays induced by collagen (5 micro g/mL), ADP (5 micro M) and arachidonic acid (100 micro M) in rabbit citrated platelet-rich plasma. Compounds 2b, 2d, and 2h were found to be the most potent, exhibiting a significant antiplatelet activity on arachidonic acid- and collagen-induced platelet aggregation. In addition, these new antiplatelet agents are free of gastric ulcerogenic effect and presented discrete anti-inflammatory and analgesic properties. The N-para-chlorophenyltriazolyl-4-acylhydrazone compound 2h produced the highest inhibitory effect on collagen (IC(50)=21.6+/-0.4 micro M) and arachidonic acid-induced platelet aggregation (IC(50)=2.2+/-0.06 micro M), suggesting that the nature of the substituent on the phenyl ring of the N-heteroaromatic system of NAH moiety may be an important structural requirement for the improvement of antiplatelet activity, in comparison with lead-series 1.  相似文献   

9.
Certain oxime- and amide-containing quinolin-2(1H)-one derivatives were synthesized and evaluated for their antiproliferative and antiplatelet activities. These compounds were synthesized via alkylation of hydroxyl precursors followed by the reaction with NH(2)OH or NaN(3) (Schmidt reaction). The preliminary assays indicated that amide derivatives are either weakly active or inactive while the oxime counterparts exhibited potent inhibitory activities against platelet aggregation induced by collagen, AA (arachidonic acid), and U46619 (the stable thromboxan A(2) receptor agonist). Among them, (Z)-6-[2-(4-methoxyphenyl)-2-hydroxyiminoethoxy]quinolin-2(1H)-one (7c) was the most active against AA induced platelet aggregation with an IC(50) of 0.58microM and was inactive against cell proliferation. For the inhibition of U46619 induced aggregation, 7a and 8a-c exhibited very potent activities with IC(50) values in a range between 0.54 and 0.74microM. For the antiproliferative evaluation, N-(biphenyl-4-yl)-2-(2-oxo-1,2-dihydroquinolin-7-yloxy)acetamide (11d) was the most potent with GI(50) values of <10, 10.8, and <10microM against the growth of MT-2, NCI-H661, and NPC-Tw01, respectively, and possessed only a weak antiplatelet activity. Further evaluation of 11d as a potential anticancer agent is on-going.  相似文献   

10.
Summary Thrombin, the most potent physiological platelet agonist interacts with cells through a specific G protein-coupled receptor which has been cloned and sequenced. Synthetic thrombin receptor peptides (TRAPS) comprising the first 5 amino acids (SFLLR and SFLLR-NH2) of the new N-terminus tethered ligand of the thrombin receptor that is generated by thrombin's proteolytic activity were found to cause full platelet aggregation. During the screening of novel thrombin receptor derived non-peptide mimetics in the platelet aggregation assay we found that 1-phenylacetyl-4-(6-guanidohexanoyl)-piperazine (1) and 1-(6-guanidohexanoyl)-4-(phenylacetylamidomethyl)-piperidine (2) exertedin vitro antagonist activities (56% and 40% correspondingly) as it is depicted by the platelet aggregation assay. Using Molecular Modeling, the synthetic compounds were overlayed with SFFLR. All three superimposed low energy structures had Phe and Arg aminoacids in spatial close proximity. The superimposition results revealed that1 resembled more the stereoelectronic environment of SFLLR than2. This difference may be related to their different antagonist efficacy.  相似文献   

11.
Many clinical trials have demonstrated the beneficial effects of soybean (Glycine max) on general cardiovascular health. Among a variety of soybeans, black soybean is known to display diverse biological activities superior to those of yellow and green soybeans, such as in antioxidant, anti-inflammatory and anticancer activities. However, few studies have been directed on the effect of black soybean on cardiovascular function. In this study, we aimed to investigate the effect of black soybean extract (BB) on platelet activation, a key contributor to thrombotic diseases. In freshly isolated human platelets, BB has shown potent inhibitory activity on collagen-induced platelet aggregation, while yellow soybean extract had marginal activity only. BB also attenuated serotonin secretion and P-selectin expression, which are important factors for the platelet–tissue interaction along with thromboxane A2 formation. These in vitro results were further confirmed in an ex vivo platelet aggregation measurement and in vivo venous thrombosis model where oral administration of BB reduced collagen-induced platelet aggregation and FeCl3-induced thrombus formation significantly. A potential active ingredient for antiplatelet effects of BB was isolated and identified to be adenosine through bioassay-directed fractionation and NMR and ESI-MS analyses. These results indicate that black soybean can be a novel dietary supplement for the prevention of cardiovascular risks and the improvement of blood circulation.  相似文献   

12.
Coumarins and their derivatives possessed a variety of biological activities and some of coumarin-based drugs have been approved by the US Food and Drug Administration. Alzheimer's disease (AD) has caused great losses to human society. However, due to its complex pathogenesis, the ideal therapeutic approach has not been found yet. Free radical scavenging activity which is one of the main activities of coumarin core structure is closely related to other anti-AD activities. Therefore, in this work coumarins were chosen as privileged lead compounds for the development of anti-AD drugs based on strategy of multi-target directed ligands (MTDLs). Derivatives 1 – 3 which could modulate multiple targets simultaneously, including ROS, cholinesterase, βamyloid (Aβ) aggregation, and metal dyshomeostasis were designed and for the first time synthesized. Their anti-AD activities were studied both in vitro and in silico. Results showed that 1 – 3 possessed potent antioxidant activities and 7-OH group did change the electron distribution of the molecule and enhance the antioxidant activities. They also have good inhibition activities on acetylcholinesterase (AChE) and Aβ aggregation and compound 1 had the strongest AChE inhibitory effect among the three compounds (AChE IC50=11.15 μM). Compound 1 – 3 could also selectively chelate with Cu2+ and Al3+ to regulate the metal homeostasis. In silico simulations, including molecular docking and prediction of ADMET performance, indicated that 1 – 3 could interact with target proteins and cross the blood brain barrier. In conclusion, 1 – 3 could be promising MTDLs applied as anti-AD candidate drugs.  相似文献   

13.
This paper describes the synthesis, antiplatelet and theoretical evaluations of 10 N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazides (2aj). These compounds were synthesized, characterized and screened for their in vitro antiplatelet profile against human platelet aggregation using arachidonic acid, adrenaline and ADP as agonists. Among NAH derivatives 2aj, the compounds 2a, 2c, 2e, 2g and 2h were the most promising molecules with significant antiplatelet activity.  相似文献   

14.
A series of 3-substituted-1(3H)-isobenzofuranone 6a-g and 7a-g were synthesized from phthalic anhydride. The compound 6a-g was resolved. The antiplatelet activities of these compounds were evaluated using in vitro experiment of platelet aggregation. The levels of antiplatelet activity were displayed as following sequence: l-isomer >dl-isomer>d-isomer, respectively. The alkylphthalide is more active than the corresponding alkenephthalide. All these compounds were less active than n-butylphthalide (NBP, 6c) and Aspirin (Asp).  相似文献   

15.
Selective PDE3 inhibitors improve cardiac contractility and may be used in congestive heart failure. However, their proarrhythmic potential is the most important side effect. In this research we designed, synthesized and evaluated the potential cardiotonic activity of thirteen PDE3 inhibitors (4-[(4-methyl-2-oxo-1,2-dihydro-6-quinolinyl)oxy]butanamide analogs) using the spontaneously beating atria model. The design strategy was based on the structure of cilostamide, a selective PDE3 inhibitor. In each experiment, atrium of reserpine-treated rat was isolated and the contractile and chronotropic effects of a synthetic compounds were assessed. All experiments were carried out in comparison with IBMX, amrinone and cilostamide as standard compounds. The results showed that, among the new compounds, the best pharmacological profile was obtained with the compound 6-[4-(4-methylpiperazine-1-yl)-4-oxobutoxy]-4-methylquinolin-2(1H)-one, 4j, which displayed selectivity for increasing the force of contraction (165 ± 4% change over the control) rather than the frequency rate (115 ± 7% change over the control) at 100 μM and potent inhibitory activity of PDE3 with IC50 = 0.20 μM.  相似文献   

16.
A series of pyrrolo[2,3-d]pyridazinones was synthesized and tested for their inhibitory activity on PDE4 subtypes A, B and D and selectivity toward Rolipram high affinity binding site (HARBS). New agents with interesting profile were reported; in particular compound 9e showed a good PDE4 subtype selectivity, being 8 times more potent (IC50 = 0.32 μM) for PDE4B (anti-inflammatory) than for PDE4D (IC50 = 2.5 μM), generally considered the subtype responsible for emesis. Moreover the ratio HARBS/PDE4B was particularly favourable for 9e (147), suggesting that the best arranged groups around the pyrrolopyridazinone core are an isopropyl at position-1, an ethoxycarbonyl at position-2, together with an ethyl group at position-6.

For compounds 8 and 15a the ability to inhibit TNFα production in PBMC was evaluated and the results are consistent with their PDE4 inhibitory activity.  相似文献   

17.
A number of new amine scaffolds with good inhibitory activity in the ADP-induced platelet aggregation assay have been found to be potent antagonists of the P2Y1 receptor. SAR optimization led to the identification of isoindoline 3c and piperidine 4a which showed good in vitro binding and functional activities, as well as improved aqueous solubility. Among them, the piperidine 4a showed the best overall profile with favorable PK parameters.  相似文献   

18.
BackgroundAspirin is a cornerstone in management of coronary artery disease (CAD). However, considerable variability in the antiplatelet effect of aspirin has been reported.AimTo investigate independent determinants of reduced antiplatelet effect of aspirin in stable CAD patients.MethodsWe performed a cross-sectional study including 900 stable, high-risk CAD patients. Among these, 795 (88%) had prior myocardial infarction, 250 (28%) had type 2 diabetes, and 170 (19%) had both. All patients received 75 mg aspirin daily as mono antiplatelet therapy. The antiplatelet effect of aspirin was assessed by measurement of platelet aggregation employing 1) multiple electrode aggregometry (MEA, Multiplate Analyzer) in whole blood anticoagulated with citrate or hirudin using arachidonic acid (AA) or collagen as agonists, and 2) VerifyNow Aspirin Assay. Compliance was assessed by measurement of serum thromboxane B2.ResultsPlatelet count, prior myocardial infarction, type 2 diabetes and body mass index were independent determinants of increased AA-induced MEA platelet aggregation in citrate and hirudin anticoagulated blood (p-values ≤ 0.045). Similar results were found with VerifyNow. Prior coronary artery bypass grafting, age, smoking (MEA, AA/citrate) and female gender (MEA, AA/hirudin) were also independent determinants of increased platelet aggregation (p-values ≤ 0.038). Compliance was confirmed by low serum thromboxane B2 levels in all patients (median [25%;75%]: 0.97 [0.52;1.97], range 0.02-26.44 ng/ml).ConclusionPlatelet count, prior myocardial infarction, type 2 diabetes and body mass index were independent determinants of increased platelet aggregation, indicating that these characteristics may be key factors in reduced antiplatelet effect of aspirin in stable CAD patients.  相似文献   

19.
In this study, PMC (2,2,5,7,8-pentamethyl-6-hydroxychromane), a potent antioxidant derived from alpha-tocopherol, dose-dependently inhibited agonist-induced platelet aggregation in human platelet-rich plasma. PMC is over 5-10 times more potent than alpha-tocopherol in inhibiting human platelet aggregation. Moreover, PMC (25-350 microM) dose-dependently reduced the relative fluorescence intensity of platelet membrane tagged with diphenylhexatriene (DPH). PMC is about 6-times more potent than alpha-tocopherol on this effect. Furthermore, antioxidative activity of PMC was investigated using two in vitro models. PMC inhibited non-enzymatic iron-induced lipid peroxidation in rat brain homogenates with an IC50 value of 0.21+/-0.05 microM. It was more potent than alpha-tocopherol or other classical antioxidants. PMC also scavenged the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). The concentration of PMC resulting in a decrease of 0.20 in the absorbance of DPPH was about 12.1+/-3.6 microM, was comparable in potency to alpha-tocopherol, butylated hydroxytoluence and Trolox. The antiplatelet activity of PMC may possibly be due initially to an increase in fluidity of the platelet membrane followed by inhibition of platelet aggregation. Our results indicate that PMC is a potentially effective antioxidant and antiaggregating agent, and could be helpful the design of compounds with more clinical effectiveness.  相似文献   

20.
Trapidil (N,N-diethyl-5-methyl[l,2,4]triazolo[l,5-α]pyrimidine-7-amine) inhibits platelet spreading and aggregation induced by arachidonic acid (AA), a stable analogue of prostaglandin (PG) endoperoxides (U46619), ADP, and low concentrations of thrombin, but not by A23187 and high concentrations of thrombin. Trapidil does not affect platelet adenylate cyclase but inhibits the cAMP PDE by approx. 50%. PDE inhibition proceeds via a competitive mechanism (Ki = 0.52 mM) and is not mediated by calmodulin inhibition. Trapidil does not change the platelet basal cAMP level but potentiates an increase of cAMP induced by the stable prostacyclin analogue (6β-PGIi). These results suggest that trapidil antiplatelet effects may be due to the inhibition of platelet PDE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号