首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Lee HS 《Bioresource technology》2006,97(12):1372-1376
The antiplatelet activities of Curcuma longa L. rhizome-derived materials were measured using a platelet aggregometer and compared with those of aspirin as antiplatelet agent. The active constituent from the rhizome of Curcuma longa L. was isolated and characterized as ar-turmerone by various spectral analyses. At 50% inhibitory concentration (IC50) value, ar-turmerone was effective in inhibiting platelet aggregation induced by collagen (IC50, 14.4 microM) and arachidonic acid (IC50, 43.6 microM). However, ar-turmerone had no effect on platelet activating factor or thrombin induced platelet aggregation. In comparison, ar-turmerone was significantly more potent platelet inhibitor than aspirin against platelet aggregation induced by collagen. These results suggested that ar-turmerone could be useful as a lead compound for inhibiting platelet aggregation induced by collagen and arachidonic acid.  相似文献   

2.
Seventeen aporphines were tested for antiplatelet activity. L-(+)-hemovine HCl and 7-hydroxydehydrothalicsimidine strongly inhibited platelet aggregation induced by adenosine 5'-diphosphate (ADP), arachidonic acid (AA), collagen, and platelet-activating factor (PAF). The latter showed the strongest antiplatelet activity with an IC50 of 70.4 microM against AA-induced platelet aggregation.  相似文献   

3.
We have previously reported that green tea catechins (GTC) showed an antithrombotic activity, which might be due to antiplatelet effect rather than anticoagulation. The present study was performed to investigate the effect of GTC on the arachidonic acid (AA) metabolism in order to elucidate a possible antiplatelet mechanism. GTC inhibited the collagen-, AA- and U46619-induced rabbit platelet aggregation in vitro in a concentration-dependent manner, with IC50 values of 61.0+/-2.5, 105.0+/-4.9 and 67.0+/-3.2 microg/ml, respectively. Moreover, GTC administered orally into rats inhibited the AA-induced platelet aggregation ex vivo by 46.9+/-6.1% and 95.4+/-2.2% at the doses of 25 and 50 mg/kg, respectively. [3H]AA liberation induced by collagen in [3H]AA incorporated rabbit platelets was significantly suppressed by GTC compared to the control. GTC also significantly inhibited the thromboxane A2 (TXA2) and prostaglandin D2 (PGD2) generations induced by addition of AA in intact rabbit platelets. GTC significantly inhibited TXA2 synthase activity in a concentration-dependent manner. Moreover, adenosine triphosphate (ATP) release from dense granule was inhibited by GTC in washed platelets. These results suggest that the antiplatelet activity of GTC may be due to the inhibition of TXA2 formation through the inhibition of AA liberation and TXA2 synthase.  相似文献   

4.
In an effort to develop potent antiplatelet agents, a series of trihydroxychalcones was synthesized and screened in vitro for their inhibitory effects on washed rabbit platelet aggregation induced by arachidonic acid (100 microM) and collagen (10 microg/ml). Of five compounds with potent inhibitory effects on arachidonic acid- and collagen-induced platelet aggregation, compound 4e was found to be the most potent. The structure-activity relationships suggested that antiplatelet activity was governed to a greater extent by the substituent on B ring of the chalcone template, and most of the active compounds had methoxy or dimethoxy groups on B ring.  相似文献   

5.
A number of new angular 2-morpholino-(substituted)-naphth-1,3-oxazines (compound 10b), linear 2-morpholino-(substituted)-naphth-1,3-oxazines (compounds 13b-c), linear 6, 7 and 9-O-substituted-2-morpholino-(substituted)-naphth-1,3-oxazines (compounds 17-22, 24, and 25) and angular compounds 14-16 and 23 were synthesised. The O-substituent was pyridin-2yl-methyl (15, 18, and 21) pyridin-3yl-methyl (16, 19, and 22) and 4-methylpipreazin-1-yl-ethoxy (23-25). Twelve compounds were tested for their inhibitory effect on collagen induced platelet aggregation and it was found that the most active compounds were compounds 19 and 22 with IC(50)=55±4 and 85±4 μM, respectively. Furthermore, the compounds were also assayed for their ability to inhibit DNA-dependent protein kinase (DNA-PK) activity. The most active compounds were 18 IC(50)=0.091 μM, 24 IC(50)=0.191 μM, and 22 IC(50)=0.331 μM. Homology modelling was used to build a 3D model of DNA-PK based on the X-ray structure of phosphatidylinositol 3-kinases (PI3Ks). Docking of synthesised compounds within the binding pocket and structure-activity relationships (SAR) analyses of the poses were performed and results agreed well with observed activity.  相似文献   

6.
A series of anilides and phenyl esters of piperidine-3-carboxylic acid (nipecotic acid) were synthesized and tested for the ability to inhibit aggregation of human platelet rich-plasma triggered by adenosine 5'-diphosphate (ADP) and adrenaline. As a rule, amides were about two times more active than the corresponding esters, and derivatives bearing substituents at the para position of the phenyl ring were significantly more active than the meta-substituted ones. Among the tested compounds, 4-hexyloxyanilide of nipecotic acid (18a) was found to be the most active one, its IC(50) value being close to that of the most active bis-3-carbamoylpiperidines reported in literature (ca. 40 micro M) and aspirin (ca. 60 microM) in ADP- and adrenaline-induced aggregation, respectively. Compared with the isomeric 4-hexyloxyanilides of piperidine-2-carboxylic (pipecolinic) and piperidine-4-carboxylic (isonipecotic) acids, compound 18a showed higher activity, and a Hansch-type quantitative structure-activity relationship (QSAR) study highlighted lipophilicity and increase in electron density of the phenyl ring as the properties which mainly increase the antiplatelet activity (r(2)=0.74, q(2)=0.64). The interaction of nipecotoyl anilides with phosphatidylinositol, a major component of the inner layer of the platelet membranes, was investigated by means of flexible docking calculation methods to give an account of a key event underlying their biological action.  相似文献   

7.
Antiplatelet actions of aqueous extract of onion were investigated in rat and human platelet. IC(50)values of onion extract for collagen-, thrombin-, arachidonic acid (AA)-induced aggregations and collagen-induced thromboxane A(2)(TXA(2)) formation were 0.17 +/- 0. 01, 0.23 + 0.03, 0.34 +/- 0.02 and 0.12 +/- 0.01 g/ml, respectively. [(3)H]-AA release induced by collagen (10 microg/ml) in rat platelet was decreased by onion compared to control (22.1 +/- 2.13 and 5.2 +/- 0.82% of total [(3)H]-AA incorporated, respectively). In fura-2 loaded platelets, the elevation of intracellular Ca(2+)concentration stimulated by collagen was inhibited by onion. Onion had no cytotoxic effect in platelet. Onion significantly inhibited TXA(2)synthase activity without influence on COX activity. Platelet aggregation induced by U46619, a stable TXA(2)mimetic, was inhibited by onion, indicating its antagonism for TXA(2)/PGH(2)receptor. These results suggest that the mechanism for antiplatelet effect of onion may, at least partly, involve AA release diminution, TXA(2)synthase inhibition and TXA(2)/PGH(2)receptor blockade.  相似文献   

8.
The aim of this work was to evaluate the effects of BM-567 (N-pentyl-N'-[(2-cyclohexylamino-5-nitrobenzene)sulfonyl]urea), a torasemide derivative, on both thromboxane A(2) (TXA(2)) receptors (TP) and thromboxane synthase of human platelets. The drug affinity for TP receptors of human washed platelets has been determined. In this test, BM-567 showed a high affinity (IC(50): 1.1+/-0.1nM) for the TP receptors in comparison with BM-531 (IC(50): 7.8+/-0.7nM) and sulotroban (IC(50): 931+/-85nM), two TXA(2) antagonists. We also demonstrated that BM-567 prevented platelet aggregation induced by arachidonic acid (AA) (600 microM) (ED(100): 0.20+/-0.10 microM), U-46619, a stable TXA(2) agonist (1 microM) (ED(50): 0.30+/-0.04 microM) and collagen (1microgram ml(-1)) (% of inhibition: 44.3+/-4.3% at 10 microM) and inhibited the second wave of ADP (2microM). Moreover, when BM-567 was incubated in whole blood from healthy donors, the closure time measured by the Platelet Function analyzer (PFA-100((R))) was significantly prolonged (closure time: 215+/-21s) by using collagen/epinephrine cartridges. Finally, at the concentration of 1 microM, BM-567 completely reduced the TXB(2) production from human platelets stimulated with AA (600 microM). These results indicate that BM-567 is a novel combined TXA(2) receptor antagonist and thromboxane synthase inhibitor characterized by a powerful antiplatelet potency.  相似文献   

9.
The inhibitory effects of three pure compounds isolated from wood garlic, 2,4,5-trithiahexane (I), 2,4,5,7-tetrathiaoctane (II), and 2,4,5,7-tetrathiaoctane 2,2-dioxide (III), on rabbit platelet aggregation induced by collagen, arachidonic acid, U46619, ADP (adenosine 5'-diphosphate), PAF (platelet aggregating factor), and thrombin were studied in vitro. The anti-aggregating activity of 2,4,5,7-tetrathiaoctane 4,4-dioxide (IV) was also measured with collagen and arachidonic acid. I, II, III, and IV inhibited the platelet aggregation induced by all tested agonists. I, II, and III exhibited a stronger inhibitory effect against the thrombin-induced aggregation of GFP (gel-filtered platelets) than against the aggregation induced by the other agonists. Notably, the IC50 value for III was 4 microM, which is approximately 2.5 times stronger than MATS (methyl allyl trisulfide), a major anti-platelet compound isolated from garlic. In inhibiting collagen-induced aggregation, II was as potent as MATS and aspirin, with a marked disaggregation effect on the secondary aggregation by arachidonic acid, at the rate of 47.05%/min at a concentration of 10(-4) M. I, II, and III also suppressed U46619-induced aggregation. These results suggest that sulfur-containing compounds in wood garlic not only inhibit arachidonic acid metabolism but also suppress aggregation in association with the function of the platelet plasma membrane.  相似文献   

10.
We describe herein the discovery of (E)-N-methyl-N'-((5-nitrofuran-2-yl)methylene)benzo[d]( 1 , 3 ) dioxole-5-carbohydrazide (9e), named LASSBio-1215, as a novel antiplatelet agent belonging to the N-methyl-N-acylhydrazone class, which exert their antiaggregating actions on human and rabbit platelets induced by different agonists, through cyclooxygenase-1 (COX-1) or thromboxane synthase inhibition. This compound was elected after screening of a series of functionalized furyl N-acylhydrazone derivatives, synthesized from natural safrole 10. In vitro assays showed that compound 9e presents platelet-aggregating activity in rabbit platelet-rich plasma (PRP) induced by arachidonic acid (IC(50)?=?0.7 μM) and collagen (IC(50)?=?4.5 μM). Moreover, LASSBio-1215 also inhibited almost completely the second wave of adenosine diphosphate-induced platelet aggregation in human PRP, and this effect was correlated with their ability to block the production of pro-aggregating autacoid thromboxane A(2).  相似文献   

11.
Cheng J  Kondo K  Suzuki Y  Ikeda Y  Meng X  Umemura K 《Life sciences》2003,72(20):2263-2271
Total flavones of Hippophae Rhamnoides L (TFH) are extracted from Sea buckthorn, a Chinese herbal medicine. Sea buckthorn has antioxidant, anti-ulcerogenic and hepato-protective actions, and its berry oil is reported to suppress platelet aggregation. Though it is frequently used for patients with thrombosis, the likely mechanism(s) and effects of TFH on thrombogenesis remain unclear. Thus, we have investigated the effect in-vivo of TFH on thrombogenesis and in vitro on platelet aggregation, comparing them to those of aspirin.We measured thrombotic occlusion time in a mouse femoral artery thrombosis model by the photochemical reaction between intravenously injected rose bengal and green light irradiation. In vitro platelet aggregation in whole blood was measured by single platelet counting. Thrombotic occlusion time was 8.5 +/- 0.6 min in the control group. TFH at a dose of 300 micro g/kg, intravenously administered 15 min before the rose bengal injection, significantly prolonged it to 11.6 +/- 1.0 min (P < 0.05), a similar effect on in-vivo thrombogenesis to that of aspirin. TFH at a concentration of 3.0 micro g/ml significantly (P < 0.01) inhibited in vitro platelet aggregation induced by collagen (2 micro g/ml) in a concentration dependent manner, in contrast TFH did not affect aggregation induced by arachidonic acid (80 micro M) and ADP (0.3 micro M).The results of the present study, in which TFH prevented in-vivo thrombogenesis, probably due to inhibition of platelet aggregation, suggest a possible clinical approach for the prevention of thrombosis.  相似文献   

12.
1. The platelet aggregation response to several known platelet agonists was evaluated in four Asian elephants. The platelets were highly responsive to stimulation with platelet-activating factor (PAF) and collagen, less responsive to adenosine diphosphate (ADP) and non-responsive to arachidonic acid, serotonin and epinephrine. 2. Arachidonic acid (1 x 10(-4) M), while inducing no aggregation, caused the release of 1248 +/- 1147 pg/ul (mean +/- SD) of thromboxane B2 (TXB2), the stable metabolite of thromboxane A2 from stimulated platelet. The addition of 1 x 10(-4) M ADP to platelets caused suboptimal aggregation and the release of only 25 +/- 10 pg TXB2/microliters. 3. The calcium channel blocker, verapamil, produced a dose-dependent inhibition of PAF-induced but not collagen-induced aggregation. The cyclooxygenase inhibitor, acetylsalicylic acid, produced no inhibition of either collagen- or PAF-induced aggregation.  相似文献   

13.
In this work, we reported the synthesis and evaluation of the analgesic, antiinflammatory, and antiplatelet properties of new phenothiazine-attached acylhydrazone derivatives (6), designed exploring the molecular hybridization approach between antipsychotic chlorpromazine (4) and other heterocyclic derivatives (3) and (5) developed at LASSBio. Target compounds were synthesized in very good yields exploiting diphenylamine (7) as starting material, through regioselective functionalization of the C-1 position of 10H-phenothiazine ring. The evaluation of platelet antiaggregating profile lead us to identify a new potent prototype of antiplatelet derivative, that is (6a) (IC(50)=2.3 microM), which acts in arachidonic acid pathway probably by inhibition of platelet COX-1 enzyme. Additionally, the change of para-substituent group of acylhydrazone framework permitted us to identify hydrophilic carboxylate derivative (6g) and hydrophobic bromo derivative (6b) as two new leads of analgesics more active than dipyrone used as standard and with selective peripheral or central mechanism of action.  相似文献   

14.
A series of 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl)pyridine derivatives was synthesized and evaluated as I kappaB kinase beta (IKK-beta) inhibitors. Modification of a novel IKK-beta inhibitor 1 (IKK-beta IC(50)=1500 nM, Cell IC(50)=8000 nM) at the 4-phenyl ring and 6-phenol group on the pyridine core ring resulted in a marked increased in biological activities. An optimized compound, 2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinonitrile, exhibited excellent in vitro profiles (IKK-beta IC(50)=8.5 nM, Cell IC(50)=60 nM) and a strong oral efficacy in in vivo anti-inflammatory assays (significant effects at 1mg/kg, po in arachidonic acid-induced ear edema model in mice).  相似文献   

15.
Anandamide (AEA) presents the four double bonds in the cis configuration, deriving from the arachidonic acid moiety. In the context of an antisense strategy based on the double bond configuration, all-trans AEA (t-AEA) was synthesized in high yield starting from all-trans methyl arachidonate and ethanolamine in the presence of KCN. t-AEA was assayed on rabbit platelet aggregation, obtaining effect only at high concentrations (>10(-4) M) after an also concentration-dependent lag phase. At lower concentrations it inhibited PAF-induced rabbit platelet aggregation with an IC(50)=4.6 x 10(-6) M. In contrast to anandamide, the activation of platelets was not due to the conversion of t-AEA to trans arachidonic acid, as ascertained by negative results with FAAH inhibitors. However, t-AEA was found to be a substrate for fatty acid amide hydrolase (FAAH), the enzyme that cleaves anandamide and regulates in vivo the magnitude and duration of the signaling induced by this lipid messenger.  相似文献   

16.
A protein that blocks collagen-stimulated platelet aggregation has been identified and isolated from the soluble fraction of salivary glands from Haementeria officinalis leeches. We have named this protein leech antiplatelet protein (LAPP). LAPP was isolated from soluble crude salivary gland extract by heparin-agarose, size exclusion, and C18 reverse phase high-performance chromatography. Its molecular weight is approximately 16,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under both reduced and nonreduced conditions. The sequences of peptides generated by V8 digestion of LAPP as well as its amino acid composition suggested no homology to other known proteins. The IC50 for LAPP to inhibit platelet aggregation was approximately 60 nM. This inhibitory activity is specific for collagen-induced aggregation. Platelet aggregation in response to ADP, arachidonic acid, U46619, thrombin, and ionophore A23187 was not inhibited by LAPP at a concentration that blocked platelet aggregation to collagen by 100%. In contrast, crude salivary gland-soluble extract contained activity(ies) which inhibited aggregation to all these agonists except thrombin at 1 unit/ml and 2 microM A23187. Thus, the H. officinalis leech has evolved multiple mechanisms to prevent hemostasis, including an inhibitor of collagen-stimulated platelet aggregation. The identification and isolation of LAPP demonstrates the existence of a new type of platelet inhibitor that should be useful to better understand the mechanism of collagen stimulation of platelets.  相似文献   

17.
NT-702 (parogrelil hydrochloride, NM-702), 4-bromo-6-[3-(4-chlorophenyl)propoxy]-5-[(pyridin-3-ylmethyl)amino]pyridazin-3(2H)-one hydrochloride, a novel phosphodiesterase (PDE) inhibitor synthesized as a potent vasodilatory and antiplatelet agent, is being developed for the treatment of intermittent claudication (IC) in patients with peripheral arterial disease. We assessed the efficacy of NT-702 in an experimental IC model as compared with cilostazol and additionally investigated the pharmacological property in vitro and ex vivo. NT-702 selectively inhibited PDE3 (IC(50)=0.179 and 0.260 nM for PDE3A and 3B) more potently than cilostazol (IC(50)=231 and 237 nM for PDE3A and 3B) among recombinant human PDE1 to PDE6. NT-702 inhibited in vitro human platelet aggregation induced by various agonists (IC(50)=11 to 67 nM) and phenylephrine-induced rat aortic contraction (IC(50)=24 nM). Corresponding results for cilostazol were 4.1 to 17 microM and 1.0 microM, respectively. NT-702 (3 mg/kg or more) significantly inhibited ex vivo rat platelet aggregation after a single oral dose. For cilostazol, 300 mg/kg was effective. In a rat femoral artery ligation model, NT-702 at 5 and 10 mg/kg repeated oral doses twice a day (BID) for 13 days significantly improved the reduced walking distance while the lowered plantar surface temperature was improved at 2.5 mg/kg and more. Cilostazol also improved the walking distance and surface temperature at 300 mg/kg BID but significant difference was only observed for surface temperature on day 8. These results suggest that NT-702 can be expected to have therapeutic advantage for IC.  相似文献   

18.
In this study we examined the thromboxane A(2)(TXA(2)) receptor antagonist property of BM-531 (N-tert -butyl- N'-[(2-cyclohexylamino-5-nitrobenzene)sulfonyl]urea), a torasemide derivative, on platelet function. The drug affinity for human washed platelet TXA(2)receptors labelled with [(3)H]SQ-29,548 has been determined (IC50: 0.0078 microM) and demonstrated to be higher than sulotroban (IC50: 0.93 microM) and SQ-29,548 (IC50: 0.021 microM). The antiaggregatory potency has been confirmed since we demonstrated that BM-531 prevented platelet aggregation in human citrated platelet-rich plasma induced by arachidonic acid (600 microM) (ED100: 0.125 microM), U-46619, a stable TXA(2)agonist (1 microM) (ED50: 0.482 microM) and collagen (1 microg mL(-1)) (% of inhibition: 42.9% at 10 microM) and inhibited the second wave of ADP (2 microM). Moreover, when BM-531 was incubated in whole blood from healthy donors, the closure time measured by the recently developed platelet function analyser (PFA-100(trade mark)) was significantly prolonged. These results suggest that BM-531 can be regarded as a novel non-carboxylic TXA(2)antagonist with a powerful antiplatelet potency.  相似文献   

19.
Clausine-D inhibited concentration-dependently the aggregation and release of washed rabbit platelets induced by arachidonic acid and collagen, without affecting those induced by U46619, PAF and thrombin. The IC50 values of clausine-D on arachidonic acid-and collagen-induced platelet aggregation were calculated to be 9.0±1.1 and 58.9±0.9 μM, respectively. Thromboxane B2 and prostaglandin D2 formation in platelets caused by arachidonic acid were also suppressed. Clausine-D inhibited increased intracellular concentration of calcium in platelets caused by arachidonic acid and collagen, and also abolished the generation of inositol monophosphate caused by arachidonic acid, but not that by collagen U46619, PAF and thrombin. In human citrated platelet-rich plasma, clausine-D inhibited the secondary phase, but not the primary phase, of aggregation induced by epinephrine and ADP. These results indicate that the antiplatelet effect of clausine-D is due to inhibition of the formation of thromboxane A2.  相似文献   

20.
The pharmacomodulation of sulfonylureas structurally related to torasemide and characterized by a TXA(2)antagonism led to the synthesis of BM-573. This original molecule showed a high affinity (IC(50)1.3 nM) for the TXA(2)receptor of human platelets in comparison with both reference compounds, SQ-29548 (IC(50)21 nM) and sulotroban (IC(50)930 nM). Moreover, this torasemide derivative was found to be a potent inhibitor of human platelet aggregation induced by arachidonic acid (ED(100)=0.13 microM) or by U-46619 (ED(50)=0.24 microM), a TXA(2)agonist. BM-573 relaxed the isolated rat thoracic aorta (ED(50)=28.4 nM) and guinea-pig trachea (ED(50)=17.7 nM) contracted by U-46619. BM-573 (1 microM) completely reduced the platelet production of TXB(2)induced by arachidonic acid. Finally, BM-573 (30 mg/kg, per os) lost the diuretic properties of torasemide in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号