首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogeny and expression of carbonic anhydrase-related proteins   总被引:1,自引:0,他引:1  

Background  

Carbonic anhydrases (CAs) are found in many organisms, in which they contribute to several important biological processes. The vertebrate α-CA family consists of 16 subfamilies, three of which (VIII, X and XI) consist of acatalytic proteins. These are named carbonic anhydrase related proteins (CARPs), and their inactivity is due to absence of one or more Zn-binding histidine residues. In this study, we analyzed and evaluated the distribution of genes encoding CARPs in different organisms using bioinformatic methods, and studied their expression in mouse tissues using immunohistochemistry and real-time quantitative PCR.  相似文献   

2.
CARP1 and CARP2 proteins (CARPs) are E3 ligases that target p53 as well as phospho-p53 for degradation. Because MDM2 is a critical regulator of p53 turnover, we investigated and found that CARPs associate with MDM2. We provide evidence that CARPs stabilize MDM2 by inhibiting MDM2 self-ubiquitination. CARPs together with MDM2 enhance p53 degradation, thereby inhibiting p53-mediated cell death. CARP protein levels correlate with MDM2 levels including under hypoxia where both are reduced. CARP2 was found to target 14-3-3σ for degradation, leading to MDM2 stabilization. MDMX, a homolog of MDM2, is not absolutely required for MDM2 stabilization by CARPs, although overexpression of CARP2 enhances MDM2/MDMX interaction. Taken together, our study identifies novel mechanisms by which CARP proteins regulate the p53 signaling pathway.  相似文献   

3.
The analysis of conformations corresponding to continuous amino acid repeat peptides (CARPs) comprising six or more residues in proteins of known three-dimensional structure revealed that alanine, glycine, glutamic acid, proline, valine, histidine, aspartic acid, glutamine and lysine were associated as repeating amino acid residues. Alanine, glycine and histidine CARPs were most common, although the histidine hexapeptide and large CARPs mainly correspond to affinity tags and are not part of the native protein sequence. The Ala and Glu CARPs were observed either as part of helix, or coil or a combination of these conformations. The octapeptide Ala CARP in six-hairpin glycosidases was observed as part of strand and coil conformation. The Gly and Pro CARPs were mainly associated with coil conformation. Majority of the coil regions in CARPs contained beta and gamma-turn structural motifs. The conformations of the Asp, Glu and Lys hexapeptide or larger CARPs were not defined in the corresponding protein three-dimensional structures analyzed. The longest CARP of known conformation was observed for alanine as a decapeptide in a lysozyme-like protein that corresponds to helix. A feature of CARPs is that a majority are exposed to solvent with accessible surface area greater than 200 ?(2) units in the protein three-dimensional structure.  相似文献   

4.
5.
Mutation of amino acid residues 94, 96 and 119 to histidine(s) in the human carbonic anhydrase (CA, EC 4.2.1.1) related proteins CARP VIII, X and XI restored the zinc binding and catalytic activity for the hydration of CO2 to bicarbonate. CA VIII, X and XI thus obtained showed high catalytic activity (67.3–92.0% of the activity of hCA II and much higher compared to hCA I) and were inhibited in the milli-micromolar range by inorganic anions, sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid. Among the three new isoforms, hCA X was the most efficient enzyme and also showed the highest affinity for anion inhibitors (KIs of 3.6–68 μM for phenylboronic acid, sufamic acid, sulfamide, cyanide and azide). hCA VIII was poorly inhibited by halides, cyanate, nitrate and sulfate (KIs of 38.4–65.4 mM), whereas CA XI had a behavior intermediate between that of hCA VIII and X, both regarding the catalytic activity and sensitivity to anion inhibitors.  相似文献   

6.
Corals and other biomineralizing organisms use proteins and other molecules to form different crystalline polymorphs and biomineral structures. In corals, it’s been suggested that proteins such as Coral Acid Rich Proteins (CARPs) play a major role in the polymorph selection of their calcium carbonate (CaCO3) aragonite exoskeleton. To date, four CARPs (1–4) have been characterized: each with a different amino acid composition and different temporal and spatial expression patterns during coral developmental stages. Interestingly, CARP3 is able to alter crystallization pathways in vitro, yet its function in this process remains enigmatic. To better understand the CARP3 function, we performed two independent in vitro CaCO3 polymorph selection experiments using purified recombinant CARP3 at different concentrations and at low or zero Mg2+ concentration. Our results show that, in the absence of Mg2+, CARP3 selects for the vaterite polymorph and inhibits calcite. However, in the presence of a low concentration of Mg2+ and CARP3 both Mg-calcite and vaterite are formed, with the relative amount of Mg-calcite increasing with CARP3 concentration. In all conditions, CARP3 did not select for the aragonite polymorph, which is the polymorph associated to CARP3 in vivo, even in the presence of Mg2+ (Mg:Ca molar ratio equal to 1). These results further emphasize the importance of Mg:Ca molar ratios similar to that in seawater (Mg:Ca equal to 5) and the activity of the biological system in a aragonite polymorph selection in coral skeleton formation.  相似文献   

7.
8.
Carbonic anhydrases (CAs, EC 4.2.1.1) are zinc enzymes acting as efficient catalysts for the reversible hydration of carbon dioxide to bicarbonate. 16 different alpha-CA isoforms were isolated in mammals, where they play crucial physiological roles. Some of them are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII, CA XIV and CA XV), CA VA and CA VB are mitochondrial, and CA VI is secreted in saliva and milk. Three acatalytic forms are also known, the CA related proteins (CARP), CARP VIII, CARP X and CARP XI. Representatives of the beta-delta-CA family are highly abundant in plants, diatoms, eubacteria and archaea. The catalytic mechanism of the alpha-CAs is understood in detail: the active site consists of a Zn(II) ion co-ordinated by three histidine residues and a water molecule/hydroxide ion. The latter is the active species, acting as a potent nucleophile. For beta- and gamma-CAs, the zinc hydroxide mechanism is valid too, although at least some beta-class enzymes do not have water directly coordinated to the metal ion. CAs are inhibited primarily by two classes of compounds: the metal complexing anions and the sulfonamides/sulfamates/sulfamides possessing the general formula RXSO(2)NH(2) (R=aryl; hetaryl; perhaloalkyl; X=nothing, O or NH). Several important physiological and physio-pathological functions are played by CAs present in organisms all over the phylogenetic tree, related to respiration and transport of CO(2)/bicarbonate between metabolizing tissues and the lungs, pH and CO(2) homeostasis, electrolyte secretion in a variety of tissues/organs, biosynthetic reactions, such as the gluconeogenesis and ureagenesis among others (in animals), CO(2) fixation (in plants and algae), etc. The presence of these ubiquitous enzymes in so many tissues and in so different isoforms represents an attractive goal for the design of inhibitors with biomedical applications. Indeed, CA inhibitors are clinically used as antiglaucoma drugs, some other compounds being developed as antitumour agents/diagnostic tools for tumours, antiobesity agents, anticonvulsants and antimicrobials/antifungals (inhibitors targeting alpha- or beta-CAs from pathogenic organisms such as Helicobacter pylori, Mycobacterium tuberculosis, Plasmodium falciparum, Candida albicans, etc.).  相似文献   

9.
Carbonic anhydrases are conserved in vertebrates and invertebrates, and a noncatalytic carbonic anhydrase-related protein VIII (CARP VIII) has been found in deuterostomes and the phylum Placozoa. I isolated a cDNA encoding a noncatalytic CARP from the mantle of the pearl oyster Pinctada fucata. The polypeptide (CARP-1) predicted from the nucleotide sequence shares 44-60% identity with known CARP VIII sequences, and its phylogenetic analysis showed that P. fucata formed a single group with deuterostome invertebrates. However, since CARP VIII sequences are not identified in protostomes, these results suggest that CARP-1 may have originated in molluscs independently from deuterostome CARP VIII sequences.  相似文献   

10.
Kwaw I  Sun J  Kaback HR 《Biochemistry》2000,39(11):3134-3140
The N- and C-terminal halves of lactose permease, each with a single-Cys residue in a cytoplasmic loop, were coexpressed, and cross-linking was studied in the absence or presence of ligand. Out of the 68 paired-Cys mutants in cytoplasmic loops IV/V and VIII/IX or X/XI, three pairs in loop IV/V and X/XI, (i) Arg135 --> Cys/Thr338 --> Cys, (ii) Arg134 --> Cys/Val343 --> Cys, and (iii) Arg134 --> Cys/Phe345 --> Cys, form a spontaneous disulfide bond, indicating that loops IV/V and X/XI are in close proximity. In addition, specific paired-Cys residues in loop IV/V (132-138) and loop VIII/IX (282-290) or loop X/XI (335-345) cross-link with iodine and/or the homobifunctional cross-linking agents N, N'-o-phenylenedimaleimide, N,N'-p-phenylenedimaleimide, and 1, 6-bis(maleimido)hexane. The results demonstrate that loop IV/V is close to both loop VIII/IX and loop X/XI. On the other hand, similar though less extensive cross-linking studies indicate that neither the N terminus nor loop II/III appear to be close to loops VIII/IX or X/XI. The findings suggest that the longer cytoplasmic loops are highly flexible and interact in a largely random fashion. However, although a Cys residue at position 134 in loop IV/V, for example, is able to cross-link with a Cys residue at each position in loop VIII/IX or loop X/XI, Cys residues at other positions in loop IV/V exhibit markedly different cross-linking patterns. Therefore, although the domains appear to be very flexible, the interactions are not completely random, suggesting that there are probably at least some structural constraints that limit the degree of flexibility. In addition, evidence is presented suggesting that ligand binding induces conformational alterations between loop IV/V and loop VIII/IX or X/XI.  相似文献   

11.
Placental abnormalities are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ~5% of all pregnancies. An important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human and mouse placenta show structural similarities, but there have been no systematic attempts to assess their molecular similarities or differences. We collected protein and mRNA expression data through shot‐gun proteomics and microarray expression analysis of the highly vascular exchange region, microdissected from the human and mouse near‐term placenta. Over 7000 ortholog genes were detected with 70% co‐expressed in both species. Close to 90% agreement was found between our human proteomic results and 1649 genes assayed by immunohistochemistry for expression in the human placenta in the Human Protein Atlas. Interestingly, over 80% of genes known to cause placental phenotypes in mouse are co‐expressed in human. Several of these phenotype‐associated proteins form a tight protein–protein interaction network involving 15 known and 34 novel candidate proteins also likely important in placental structure and/or function. The entire data are available as a web‐accessible database to guide the informed development of mouse models to study human disease.  相似文献   

12.
13.
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e., CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/ biomedical applications of such compounds in different fields of life sciences.  相似文献   

14.
A full-length rabbit cDNA of cardiac adriamycin responsive protein (CARP) has been cloned. It shows high levels of identity at the amino acid sequence level (>86%) with the rat, mouse and human homologues. CARP mRNA levels are highly regulated in adriamycin-cardiomyopathy in rabbits.  相似文献   

15.
Using short hairpin RNA against p53, transient ectopic expression of wild-type p53 or mutant p53 (R248W or R175H), and a p53- and p21-dependent luciferase reporter assay, we demonstrated that growth arrest and apoptosis of FaDu (human pharyngeal squamous cell carcinoma), Hep3B (hepatoma), and MG-63 (osteosarcoma) cells induced by aloe-emodin (AE) are p53-independent. Co-immunoprecipitation and small interfering RNA (siRNA) studies demonstrated that AE caused S-phase cell cycle arrest by inducing the formation of cyclin A-Cdk2-p21 complexes through extracellular signal-regulated kinase (ERK) activation. Ectopic expression of Bcl-X(L) and siRNA-mediated Bax attenuation significantly inhibited apoptosis induced by AE. Cyclosporin A or the caspase-8 inhibitor Z-IETD-FMK blocked AE-induced loss of mitochondrial membrane potential and prevented increases in reactive oxygen species and Ca(++). Z-IETD-FMK inhibited AE-induced apoptosis, Bax expression, Bid cleavage, translocation of tBid to mitochondria, ERK phosphorylation, caspase-9 activation, and the release of cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G from mitochondria. The stability of the mRNAs encoding caspase-8 and -10-associated RING proteins (CARPs) 1 and 2 was affected by AE, whereas CARP1 or 2 overexpression inhibited caspase-8 activation and apoptosis induced by AE. Collectively, our data indicate AE induces caspase-8-mediated activation of mitochondrial death pathways by decreasing the stability of CARP mRNAs in a p53-independent manner.  相似文献   

16.
This first analysis of monocotyledon myosin genes showed that at least five genes, one of which was probably spliced to yield two isoforms, were expressed in maize (Zea mays L.). The complete coding sequence of ZMM1 was determined, as were most of the sequences of two other myosin cDNAs (ZMM2 and ZMM3). ZMM1 and ZMM2 belonged to myosin class XI while ZMM3 was in class VIII. ZMM1 was abundantly expressed in leaves, roots, coleoptiles, and stems. ZMM3 showed a similar distribution but was expressed poorly in pollen. ZMM2 was predominantly expressed in seeds and may be part of a suite of cytoskeletal proteins in reproductive tissues. Phylogenetic analysis suggested that the origin of myosin classes VIII and XI predated that of angiosperms. Immunofluorescence studies using M11L1, a myosin XI antibody specific for the exposed loop 1 head region of myosin, indicated that myosin XI occurred in the cytoplasm of all root tip cells. The highest concentration of myosin XI was in the differentiating epidermal cells. In dividing cells, myosin XI was present near the cytokinetic apparatus at approximately the same concentration seen in other portions of the cytoplasm. Western blot analysis of subcellular fractions indicated that myosin XI was concentrated in mitochondria and low-density membranes.  相似文献   

17.
Review Article     
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 14 different isoforms. Some of these isozymes are cytosolic (CA I, CA II, CA III, CA VII, CA XIII), others are membrane-bound (CA IV, CA IX, CA XII and CA XIV), CA V is mitochondrial and CA VI is secreted in the saliva and milk. Three cytosolic acatalytic forms are also known (CARP VIII, CARP X and CARP XI). The catalytically active isoforms, which play important physiological and patho-physiological functions, are strongly inhibited by aromatic and heterocyclic sulfonamides. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications. The use of such CA inhibitors (CAIs) as antiglaucoma drugs are discussed in detail, together with the recent developments that led to isozyme-specific and organ-selective inhibitors. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CAIs were shown to inhibit the growth of several tumor cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumor therapies. Future prospects for drug design of inhibitors of these ubiquitous enzymes are dealt with. Although activation of CAs has been a controversial issue for some time, recent kinetic, spectroscopic and X-ray crystallographic experiments offered an explanation of this phenomenon, based on the catalytic mechanism. It has been demonstrated recently, that molecules that act as carbonic anhydrase activators (CAAs) bind at the entrance of the enzyme active site participating in facilitated proton transfer processes between the active site and the reaction medium. In addition to CA II-activator adducts, X-ray crystallographic studies have been also reported for ternary complexes of this isozyme with activators and anion (azide) inhibitors. Structure-activity correlations for diverse classes of activators is discussed for the isozymes for which the phenomenon has been studied, i.e, CA I, II, III and IV. The possible physiological relevance of CA activation/inhibition is also addressed, together with recent pharmacological/biomedical applications of such compounds in different fields of life sciences.  相似文献   

18.
Mouse annexin VIII cDNA was characterized by DNA sequencing of expressed sequence tag clones, molecular systematic analysis, and genetic linkage mapping to investigate its evolutionary origin. Its subfamily identity, divergence pattern, and nucleotide substitution rate were established by comparison with other annexin cDNA and deduced protein sequences. The known phylogenetic association of annexin VIII in an evolutionary clade with annexins XI, IV, V, and VIa identified these close homologs as potential progenitors or duplication products. Cladistic analysis confirmed the base position of annexin XI and its relationship to annexin IV as a direct duplication product. Although annexin VIII also derived from annexin XI, the evolutionary branching order, gene separation times, and mapping results indicated that it was probably a subsequent duplication product of annexin IV about 300 million years ago. Dates were calibrated against the assumed separation time of 75 Mya for rodents from other mammals, divergence rates were based on comparisons of all available annexin species, and relative rate tests implied individually stable gene clocks for most annexins. Linkage mapping of mouse Anx8 to the centromeric region of Chromosome (Chr) 14 placed it in a more distal homology group from previously mapped Anx7 and Anx11. Despite their synteny, the combined proximity and segregation of these three annexins diminished the likelihood that they were mutual gene duplication products. Received: 25 May 1997 / Accepted: 13 September 1997  相似文献   

19.
Cryo-electron microscopy (Cryo-EM)1 is a powerful approach to investigate the functional structure of proteins and complexes in a hydrated state and membrane environment2.Coagulation Factor VIII (FVIII)3 is a multi-domain blood plasma glycoprotein. Defect or deficiency of FVIII is the cause for Hemophilia type A - a severe bleeding disorder. Upon proteolytic activation, FVIII binds to the serine protease Factor IXa on the negatively charged platelet membrane, which is critical for normal blood clotting4. Despite the pivotal role FVIII plays in coagulation, structural information for its membrane-bound state is incomplete5. Recombinant FVIII concentrate is the most effective drug against Hemophilia type A and commercially available FVIII can be expressed as human or porcine, both forming functional complexes with human Factor IXa6,7.In this study we present a combination of Cryo-electron microscopy (Cryo-EM), lipid nanotechnology and structure analysis applied to resolve the membrane-bound structure of two highly homologous FVIII forms: human and porcine. The methodology developed in our laboratory to helically organize the two functional recombinant FVIII forms on negatively charged lipid nanotubes (LNT) is described. The representative results demonstrate that our approach is sufficiently sensitive to define the differences in the helical organization between the two highly homologous in sequence (86% sequence identity) proteins. Detailed protocols for the helical organization, Cryo-EM and electron tomography (ET) data acquisition are given. The two-dimensional (2D) and three-dimensional (3D) structure analysis applied to obtain the 3D reconstructions of human and porcine FVIII-LNT is discussed. The presented human and porcine FVIII-LNT structures show the potential of the proposed methodology to calculate the functional, membrane-bound organization of blood coagulation Factor VIII at high resolution.  相似文献   

20.
Chromosomal localization of the gene for human coagulation factor XI (F11) was determined by in situ hybridization using a genomic DNA probe which contained exons VIII, IX, and X of the gene. The results indicate that the gene is located at 4q35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号