首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the detailed studies on the inhibitory effect of tannic acid (TA) on Clostridium histolyticum collagenase (ChC) activity against degradation of extracellular matrix component of collagen. The TA treated collagen exhibited 64% resistance against collagenolytic hydrolysis by ChC, whereas direct interaction of TA with ChC exhibited 99% inhibition against degradation of collagen and the inhibition was found to be concentration dependant. The kinetic inhibition of ChC has been deduced from the extent of hydrolysis of N-[3-(2-furyl) acryloyl]-Leu-Gly-Pro-Ala (FALGPA). This data provides a selective competitive mode of inhibition on ChC activity seems to be influenced strongly by the nature and structure of TA. TA showed inhibitor activity against the ChC by molecular docking method. This result demonstrated that TA containing digalloyl radical possess the ability to inhibit the ChC. The inhibition of ChC in gaining new insight into the mechanism of stabilization of collagen by TA is discussed.  相似文献   

2.
Inhibition effects of (+)-catechin-aldehyde polycondensates against the activity of proteinases, Clostridium histolyticum collagenase (ChC) and human neutrophil elastase (HNE) causing proteolytic degradation of extracellular matrix (ECM), have been investigated. In normal tissues, a balance is reached between the formation and destruction of ECM, leading to a state of homeostasis. However, uncontrolled destruction of ECM contributes to tumor invasion and metastasis. In the measurement of the inhibition activity on ChC and HNE, the polycondensates exhibited superior effects compared to the catechin monomer. Kinetic assays of ChC and HNE inhibition by the polycondensate clearly showed a mixed-type inhibition. These data demonstrate that the polycondensates are a new class of proteinase inhibitors useful for a potent therapeutic agent.  相似文献   

3.
Inhibitory effect of green tea polyphenols viz., catechin and epigallocatechin gallate (EGCG) on the action of collagenase against collagen has been probed in this study. Catechin and EGCG treated collagen exhibited 56 and 95% resistance, respectively, against collagenolytic hydrolysis by collagenase. Whereas direct interaction of catechin and EGCG with collagenase exhibited 70 and 88% inhibition, respectively, to collagenolytic activity of collagenase against collagen and the inhibition was found to be concentration dependent. The kinetics of inhibition of collagenase by catechin and EGCG has been deduced from the extent of hydrolysis of (2-furanacryloyl-L-leucyl-glycyl-L-prolyl-L-alanine), FALGPA. Both catechin and EGCG exhibited competitive mode of inhibition against collagenase. The change in the secondary structure of collagenase on treatment with catechin and EGCG has been monitored using circular dichroism spectropolarimeter. CD spectral studies showed significant changes in the secondary structure of collagenase on treatment with higher concentration of catechin and EGCG. Higher inhibition of EGCG compared to catechin has been attributed to the ability of EGCG to exhibit better hydrogen bonding and hydrophobic interaction with collagenase.  相似文献   

4.
Ultrasound has been applied for varied purposes as it provides additional mechanical energy to a system, and is still profitable and straightforward, which are advantages for industrial applications. In this work, ultrasonic treatments were applied to purified collagenase fractions from a fermented extract by Aspergillus terreus UCP 1276 aiming to evaluate the potential effect on collagen hydrolysis. The physical agent was evaluated as an inductor of collagen degradation and consequently as a producer of peptides with anticoagulant activity. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses were also carried out to compare the hydrolysis techniques. The ultrasound (40 kHz, 47.4 W/L) processing was conducted under the same conditions of pH and temperature at different times. The ultrasound-assisted reaction was accelerated in relation to conventional processing. Collagenolytic activity was enhanced and tested in the presence of phenylmethanesulfonyl fluoride inhibitor. Underexposure, the activity was enhanced, reaching more than 72.0% of improvement in relation to the non-exposed enzyme. A period of 30 min of incubation under ultrasound exposure was enough to efficiently produce peptides with biological activity, including anticoagulation and effect on prothrombin time at about 60%. The results indicate that low-frequency ultrasound is an enzymatic inducer with likely commercial applicability accelerating the enzymatic reaction. Bioelectromagnetics. 2020;41:113–120. © 2019 Bioelectromagnetics Society.  相似文献   

5.
Antimutagenic activity of Lactobacillus plantarum KLAB21, isolated from Korean kimchi, was investigated against MNNG (N-methyl-N-nitro-N-nitrosoguanidine), NQO (4-nitroquinoline-1-oxide), NPD (4-nitro-O-phenylenediamine) and aflatoxin B1 using Salmonella typhimurium strains TA100 and TA98. Although all the cell fractions including the culture supernatant, dry cells and cell-free extract exhibited antimutagenic activity against MNNG and NQO, the culture supernatant possessed the highest activity. The antimutagenic ratio of the culture supernatant was 98.4% against MNNG on strain TA100 and 57.3% against NQO on strain TA98. Its antimutagenic activity was reconfirmed by a Bacillus subtilis spore-rec assay. Levels of the antimutagenic ratios of other lactic acid bacteria originating from fermented milk ranged between 26.8 to 53% against MNNG and 28.5 to 43.4% against NQO. The antimutagenic activities of the strain KLAB21 against NPD were 72.6% on TA100 and 62.8% on TA98, and those against aflatoxin B1 were 82.5% on TA100 and 78.2% on TA98.  相似文献   

6.
Summary The net amount of collagen produced and deposited by fibroblasts in cell culture is determined by the rate of collagen synthesis as well as the rate of collagen degradation. Although collagen synthesis can be analyzed by several techniques, it is more difficult to measure collagen degradation. Breakdown of collagen depends upon the activity of a family of structurally and catalytically related mammalian enzymes termed matrix metalloproteinases (MMPs). Interstitial collagenase (MMP1) initiates the cleavage of fibrillar collagen, whereas gelatinases (MMP2 and MMP9) digest the denatured collagen fragments. A method has been developed to quantitate the activity of collagenase (MMP1) and gelatinase (MMP9) in conditioned medium from fibroblast cell cultures. The assay, which uses the fluorogenic substrate Dnp-Pro-Cha-Gly-Cys(Me)-His-Ala-Lys(Nma)NH2, is technically simple and amenable to high throughput analysis. Addition of specific inhibitors of the metalloproteinases allows for simultaneous measurement of both collagenase and gelatinase activity.  相似文献   

7.
胶原蛋白酶产生菌的筛选及酶的分离纯化   总被引:4,自引:0,他引:4  
从堆积骨骼的土样中筛选出高产胶原蛋白酶的MBL13菌株,经鉴定为蜡样芽孢杆菌Bacillus cereus。对其所产的胶原蛋白酶BCC进行分离纯化,并进行酶学性质的研究。从菌株的发酵液中纯化出分子量约为38.0kDaBCC酶。酶反应的最适温度为40℃,最适pH为8.0。在50℃以下稳定,60℃保温1h酶活仅保留10%;在pH7.0~8.5活性较稳定;金属离子Ca2+、Zn2+、Mg2+对酶有激活作用,金属离子Cu2+对酶有显著的抑制作用。EDTA和EGTA能抑制该酶,表明BCC酶为一种金属蛋白酶。酶的底物特异性表明该酶为骨胶原蛋白酶,且对Ⅰ型骨胶原蛋白水解能力极显著高于Ⅱ型胶原蛋白和Ⅲ型胶原蛋白。将纯化的BCC酶应用于骨胶原蛋白的水解可以得到不同链长的多肽,其水解能力高于标准品胶原酶Ⅰ型。本研究为工业酶提供了新的菌株和新型胶原蛋白酶,为胶原蛋白酶的开发提供了重要的理论依据。  相似文献   

8.
The diethyl ether extracts isolated from unfermented milk and milk fermented byEnterococcus fœcium exhibited dose-dependent inhibition of mutagenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), nitrovin (NIT), 5-nitro-2-furylacrylic acid (NFA) and UV-irradiation on the Ames bacterial test (Salmonella typhimurium strains TA97 and TA100) and the unicellular flagellateEuglena gracilis. Overall, the fermented milk extract was the most active against UV-irradiation, less active against NIT and MNNG, and the least active against NFA on bacteria. The highest antibleaching effects were observed against MNNG. The differences between antimutagenic effects from fermented and unfermented milk extracts were determined to be statistically significant at the 0.95 CI level.  相似文献   

9.
Collagen is an essential component of tissues, which is the most abundant component in extracellular matrix and highly conserved across the animal kingdom. It can assemble into fiber and play an essential role in cell adhesion and growth and could be extremely useful in tissue engineering. In this study, the effect of tannic acid (TA) on the thermal, enzymatic and conformational stability of type I collagen has been investigated for the development of collagen‐based biomaterials. Interaction of TA with collagen demonstrates the role of hydrogen bonding and hydrophobic interaction in providing the thermal and enzymatic stability. Thermal analysis studies reveal that, hydrothermal stability of collagen increases as well as inhibits the breakdown of collagenase by formation of hydrogen bonds and hydrophobic interactions. TA binds to the collagen with high affinity because the structural flexibility of the collagen compensates for the structural rigidity of the phenolics. Increase in concentration of TA induces significant change in the conformation of triple helix. The free binding energy of TA with collagen‐like peptide was determined to be in the range of ?9.4 to ?11.2 kcal mol?1, which was calculated by using Autodock Vina software and showed numerous hydrophobic and hydrogen bond interactions. We anticipate that these collagen‐based biomaterials hold great potential for biomedical applications. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 471–483, 2014.  相似文献   

10.
In this study, the antibacterial activity of essential oil from Chamaecyparis obtusa (Sieb. et Zucc) leaves and twigs was investigated. The test strains were Klebsiella pneumoniae, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus, Escherichia coli, Legionella pneumophila, and Methicilline-resistant Staphylococcus aureus. Antibacterial activity was estimated by measuring bacterial growth inhibition. Histopathological examination was also performed. C. obtusa oil distinctly inhibited the growth of all test strains and exhibited the strongest antibacterial activity against L. monocytogenes. It was chromatographically divided into several fractions. The fractions were further tested against antibacterial activity and their chemical compositions were analyzed. The fraction containing terpinen-4-ol (TA) showed high antibacterial activity toward all strains tested. Tests with authentic samples showed that TA played a major role in the antibacterial activity of C. obtusa oil, and in a mice test, the oil actively minimized inflammation by S. aureus.  相似文献   

11.
The F(1)F(o)-ATP synthases of alkaliphilic bacteria exhibit latent ATPase activity, and for the thermoalkaliphile Bacillus sp. strain TA2.A1, this activity is intrinsic to the F(1) moiety. To study the mechanism of ATPase inhibition, we developed a heterologous expression system in Escherichia coli to produce TA2F(1) complexes from this thermoalkaliphile. Like the native F(1)F(o)-ATP synthase, the recombinant TA2F(1) was blocked in ATP hydrolysis activity, and this activity was stimulated by the detergent lauryldimethylamine oxide. To determine if the C-terminal domain of the epsilon subunit acts as an inhibitor of ATPase activity and if an electrostatic interaction plays a role, a TA2F(1) mutant with either a truncated epsilon subunit [i.e., TA2F(1)(epsilon(DeltaC))] or substitution of basic residues in the second alpha-helix of epsilon with nonpolar alanines [i.e., TA2F(1)(epsilon(6A))] was constructed. Both mutants showed ATP hydrolysis activity at low and high concentrations of ATP. Treatment of the purified F(1)F(o)-ATP synthase and TA2F(1)(epsilon(WT)) complex with proteases revealed that the epsilon subunit was resistant to proteolytic digestion. In contrast, the epsilon subunit of TA2F(1)(epsilon(6A)) was completely degraded by trypsin, indicating that the C-terminal arm was in a conformation where it was no longer protected from proteolytic digestion. In addition, ATPase activity was not further activated by protease treatment when compared to the untreated control, supporting the observation that epsilon was responsible for inhibition of ATPase activity. To study the effect of the alanine substitutions in the epsilon subunit in the entire holoenzyme, we reconstituted recombinant TA2F(1) complexes with F(1)-stripped native membranes of strain TA2.A1. The reconstituted TA2F(o)F(1)(epsilon(WT)) was blocked in ATP hydrolysis and exhibited low levels of ATP-driven proton pumping consistent with the F(1)F(o)-ATP synthase in native membranes. Reconstituted TA2F(o)F(1)(epsilon(6A)) exhibited ATPase activity that correlated with increased ATP-driven proton pumping, confirming that the epsilon subunit also inhibits ATPase activity of TA2F(o)F(1).  相似文献   

12.
Methanolic extracts of Acorus calamus (Rhizome), Hemidesmus indicus (Stem), Holarrhena antidysenterica (Bark) and Plumbago zeylanica (Root), were tested for their antimutagenic potential. These extracts, at tested concentrations, showed no sign of mutagenicity to Salmonella typhimurium tester strains. The extracts of the plants exhibited varying level of antimutagenicity. At a dose of 100 microg/plate, the extracts exhibited the inhibition of His+ revertants from 18.51% to 82.66% against direct acting mutagens, methyl methanesulphonate (MMS) and sodium azide (NaN3) induced mutagenicity in Salmonella tester strains TA 97a, TA 100, TA 102 and TA 104. However, at lower concentrations (25 and 50 mcirog/plate) of the plant extracts, a decrease in antimutagenic activity was recorded. Dose dependent antimutagenic activity of the extracts is also evident from linear regression analysis of the data. The over all antimutagenic potential of above four extracts was found to be in order of A. calamus > H. indicus > H. antidysenterica > P. zeylanica. Further, total phenolic content of these extracts did not correlate with its antimutagenic activity in A. calamus and P. zeylanica.  相似文献   

13.
This report describes the use of the compound 2-methoxy-2,4-diphenyl-3(2H)-furanone to label collagen as a substrate for the detection of mammalian collagenase in a fluorescent assay which is suitable for screening large numbers of samples. The compound 2-methoxy-2,4-diphenyl-3(2H)-furanone presents distinct advantages over other fluorophores, since both the unbound reagent and its hydrolysis products are nonfluorescent. The labeling procedure uses commercially available collagen, is fast and simple, and gives a 90% yield of labeled substrate. The fluorescent collagen substrate is stable and retains fluorescence over a wide range of pH. The assay detects, reproducibly, metal-dependent collagenase activity in microliter volumes of conditioned media from cultured neoplastic cells or in chromatographic fractions from such media.  相似文献   

14.
A polyphenolic mixture derived from sesame-seed perisperm (SSP) strongly reduced the mutagenicity of hydrogen peroxide (H2O2), sodium azide (NaN3), and benzo[a]pyrene (BaP) in strains TA100 and/or TA98 of Salmonella typhimurium. It exhibited desmutagenic activity against H2O2, BaP in TA98 and/or TA100 and biomutagenic activity (apparently by affecting the DNA-repair system) against NaN3 in strain TA100. According to in vitro experiments the polyphenolic mixture inhibited the activity of the CYP1A1 (EROD) enzyme responsible for the activation of BaP in the Ames’ test, as well as that of the cytosolic enzyme GST.A cytosolic fraction from liver of male Wistar rats treated with either 20% SSP in the food, or 3 mg or 6 mg of polyphenolic mixture/20 g food/day for a time period of 8 weeks reduced the mutagenic potential of BaP in strains TA100 and TA98, with the cytosolic fraction from rats treated with SSP causing the strongest reduction. Furthermore, a microsomal fraction from the 20% SSP-treated rats inhibited the mutagenicity of BaP in strains TA100 (26.3%) and TA98 (23%). In contrast, a microsomal fraction from rats treated with 3 mg of polyphenolic mixture stimulated the mutagenicity of BaP in TA100 but reduced it in TA98, while for the microsomal fraction from rats treated with 6 mg of polyphenolic mixture, these effects on TA100 and TA98 were reversed.  相似文献   

15.
Elevated levels of oxidative DNA lesions have been noted in many tumors and such damage is strongly implicated in the etiology of cancer. The cumulative risk of cancer increases with the fourth power of age and is associated with an accumulation of oxidative DNA damage. Many agents, synthetic or natural, that can inhibit mutation have been depicted as cancer chemopreventive agents. Antimutagenicity of the 3-hydroxy-3-methylgutaryl-CoA (HMG-CoA) reductase inhibitors atorvastatin and lovastatin was studied using the Ames Salmonella typhimurium assay. Directly acting mutagens, sodium azide (NaN3) and 4-nitro-o-phenylenediamine (NPDA), were used to induce mutation in Salmonella strains TA98 and TA100. The antimutagenicity of lovastatin and atorvastatin was found to be significant (p < 0.01) and dose-dependent. The percentage inhibition of a 3 mg lovastatin-treated plate was found to be 79.9% and 61.8% against NPDA- and NaN3-induced mutation to TA98 and TA100, respectively. Atorvastatin (0.5 mg/plate) inhibited NPDA-and NaN3-induced mutation to TA98 and TA100 by 78.6% and 45.5%, respectively. Atorvastatin showed antimutagenic activity at lower concentrations than lovatstatin. The results of the present study regarding the antimutagenic activity of atorvastatin and lovastatin suggested their therapeutic application as cancer chemopreventive agents.  相似文献   

16.
The antioxidant and mutagenic/antimutagenic activities of the fixed oils from Nigella sativa (NSO) and Nigella damascena (NDO) seeds, obtained by cold press-extraction from the cultivar samples, were comparatively investigated for the first time. The antimutagenicity test was carried out using classical and modified Ames tests. The fatty acid composition of the fixed oils was characterized by gas chromatography–mass spectrometry (GC-MS) while the quantification of thymoquinone in the fixed oils was determined by UPC2. The main components of the NSO and NDO were found to be linoleic acid, oleic acid, and palmitic acid. The results of the Ames test confirmed the safety of NSO and NDO from the viewpoint of mutagenicity. The results of the three antioxidant test methods were correlated with each other, indicating NDO as having a superior antioxidant activity, when compared to the NSO. Both NSO and NDO exhibited a significant protective effect against the mutagenicity induced by aflatoxin B1 in Salmonella typhimurium TA98 and TA100 strains. When microsomal metabolism was terminated after metabolic activation of the mycotoxin, a significant increase in antimutagenic activity was observed, suggesting that the degradation of aflatoxin B1 epoxides by these oils may be a possible antimutagenic mechanism. It is worthy to note that this is the first study to assess the mutagenicity of NSO and NDO according to the OECD 471 guideline and to investigate antimutagenicity of NDO in comparison to NSO against aflatoxin.  相似文献   

17.
The murine adenocarcinoma cell line TA 3 synthesized nitrite from L-arginine upon stimulation with gamma-interferon (IFN-gamma) associated with tumor necrosis factor (TNF), and/or bacterial lipopolysaccharide (LPS), but not with IFN-gamma, TNF, or LPS added separately. Induction of the NO2(-)-generating activity caused an inhibition of DNA synthesis in TA 3 cells. This inhibition was prevented by the L-arginine analog N omega-nitro-L-arginine, which inhibited under the same conditions nitrite production by TA 3 cells. The TA 3 M2 subclone, selected for enhanced ribonucleotide reductase activity, was found to be less sensitive than the wild phenotype TA 3 WT to the cytostatic activity mediated by the NO2(-)-generating system. Cytosolic preparations from TA 3 M2 cells treated for 24 or 48 h with IFN-gamma, TNF, and LPS exhibited a reduced ribonucleotide reductase activity, compared to untreated control cells. No reduction in ribonucleotide reductase activity was observed when N omega-nitro-L-arginine was added to treated cells. Addition of L-arginine, NADPH, and tetrahydrobiopterin into cytosolic extracts from 24-h treated TA 3 M2 cells triggered the synthesis of metabolic products from the NO2(-)-generating pathway. This resulted in a dramatic inhibition of the residual ribonucleotide reductase activity present in the extracts. The inhibition was reversed by NG-monomethyl-L-arginine, another specific inhibitor of the NO2(-)-generating activity. No L-arginine-dependent inhibition of ribonucleotide reductase activity was observed using extracts from untreated cells that did not express NO2(-)-generating activity. These results demonstrate that, in an acellular preparation, molecules derived from the NO2(-)-generating pathway exert an inhibitory effect on the ribonucleotide reductase enzyme. This negative action might explain the inhibition of DNA synthesis induced in adenocarcinoma cells by the NO2(-)-generating pathway.  相似文献   

18.
L-alanine hydroxamate derivatives were obtained by reaction of alkyl/arylsulfonyl halides with L-alanine, followed by treatment with benzyl chloride, and conversion of the COOH moiety to the CONHOH group with hydroxylamine in the presence of carbodiimides. Other derivatives were obtained by reaction of N-benzyl-alanine with aryl isocyanates, arylsulfonyl isocyanates or benzoyl isothiocyanate, followed by a similar conversion of the COOH to the CONHOH moiety. The obtained compounds were assayed as inhibitors of Clostridium histolyticum collage-nase, ChC (EC 3.4.24.3), a zinc enzyme which degrades triple helical collagen. The hydroxamate derivatives were generally 100-500 times more active than the corresponding carboxylates. In the series of synthesized derivatives, substitution patterns leading to the most potent ChC inhibitors were those involving perfluoroalkylsulfonyl-and substituted-arylsulfonyl moieties, such as pentafluorophenylsulfonyl, 3- and 4-protected-aminophenylsulfonyl-, 3- and 4-carboxy-phenylsulfonyl-, 3-trifluoromethyl-phenylsulfonyl-, or 1- and 2-naphthylsulfonyl among others. Similarly to the matrix metalloproteinase (MMP) hydroxamate inhibitors, ChC inhibitors of the type reported here must incorporate hydrophobic moieties at the P2, and P3 sites, in order to achieve tight binding to the enzyme.  相似文献   

19.
We report here the continued characterization of a 41‐kDa protease expressed in the early stage of the sea urchin embryo. This protease was previously shown to possess both a gelatin‐cleavage activity and an echinoderm‐specific collagen‐cleavage activity. In the experiments reported here, we have explored the biochemical nature of this proteolytic activity. Pepstatin A (an acidic protease inhibitor), 1,10‐phenanthroline (a metalloprotease inhibitor), and E‐64 (a thiol protease inhibitor) were without effect on the gelatin‐cleavage activity of the 41‐kDa species. Using a gelatin substrate gel zymographic assay, the serine protease inhibitors phenylmethylsulfonyl fluoride and benzamide appeared to partially inhibit gelatin‐cleavage activity. This result was confirmed in a quantitative gelatin‐cleavage assay using the water soluble, serine protease inhibitor [4‐(2‐aminoethyl)benzenesulfonylfluoride]. The biochemical character of this protease was further explored by examining the effects of calcium and magnesium, the major divalent cations present in sea water, on the gelatin‐cleavage activity. Calcium and magnesium competed for binding to the 41‐kDa collagenase/gelatinase, and prebound calcium was displaced by magnesium. Cleavage activity was inhibited by magnesium, and calcium protected the protease against this inhibition. These results identify calcium and magnesium as antagonistic agents that may regulate the proteolytic activity of the 41‐kDa species. J. Cell. Biochem. 80:139–145, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

20.
The activity of the L -asparaginase–collagen membrane was 3.4 U/mg membrane (5.8 U/cm2 membrane) and the activity yield was 29%. The apparent Michaelis constant of the asparaginase–collagen membrane was 5.9 × 10?3M. The operational half-life of the immobilized asparaginase column was 35–40 days. The L -asparaginase–collagen membrane retained 90% of its original activity after ethylene oxide gas sterilization. The dried membrane stored at room temperature retained its original activity for five months, and the membrane stored in 0.05M phosphate buffer (pH 8.0) retained its original activity for one week at 37°C. The L -asparaginase–collagen membrane tanned with 1% glutaraldehyde was stable against proteolytic enzymes. Complete degradation of L -asparagine by the L -asparaginase–collagen membrane occurred at a low concentration. The L -asparagine in dog blood plasma was completely degraded within 20 min by the extracorporal shunt using the L -asparaginase–collagen membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号