首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relationships exist between plant root growth and the phytoremediation of oil-contaminated soils. In a previous study, we demonstrated that zinnia flowers are well suited for the remediation of oil-contaminated soil. In this study, our goal was to quantify the relationship between zinnia root growth and purification of oil-contaminated soils. Three treatments were used: (1) cultivation of zinnia in oil-contaminated soil (contaminated pots), (2) cultivation in non-contaminated soil (non-contaminated pots), and (3) contaminated soil with no cultivation and only irrigation (irrigated pots). Growth of the Zinnia plants, including their roots, was significantly reduced in the contaminated pots compared with the noncontaminated pots. The soil dehydrogenase activity increased between 45 and 90?days after planting in all parts of the contaminated pots, especially the upper parts. The soil total petroleum hydrocarbon (TPH) concentrations in the contaminated pots decreased throughout the study period. Interestingly, the soil dehydrogenase activity increased, and the soil TPH concentration decreased even in lower parts of the pots where there was very little root growth. Therefore, the cultivation of plants can have a remediative effect on oil-contaminated soil even below the depth reached by the plant roots.  相似文献   

2.
The use of plants and their rhizospheric microorganisms is a promising emerging technology for remediating contaminated soils. The degradation of total petroleum hydrocarbon (TPH) in the rhizospheric and nonrhizospheric soil of three domestic plants, namely, alfalfa (Medicaga sativa) broad beans (Vicia faba) and ryegrass (Lolium perenne) was investigated. The experimental data from the studies of plantmicrobe‐soil interactions implicated the enhancement of TPH degradation by the rhizospheric microbial community. Although the three domestic plants exhibited normal growth in the presence of ~1.0% TPH, the degradation was more profound in the case of leguminous plants. The TPH degradation in the soil cultivated with broad beans and alfalfa was 36.6 and 35.8%, respectively, compared with 24% degradation in case of ryegrass. Such a high correlation between plant type and TPH degradation rates indicate that selection for enhanced rhizosphere degradation may be accomplished by selecting leguminous plants.  相似文献   

3.
This field study investigated the colonization process of soil contaminated with different petroleum products (petrol, diesel fuel, spent engine oil; dose: 6000 mg of fuel·kg?1 dry mass [d.m.] of soil) by epigeic and edaphic invertebrates during the progress of natural bioremediation and bioremediation enhanced using selected microorganisms (ZB-01 biopreparation). Epigeic fauna was captured using pitfall traps. Occurrence of edaphic fauna in soil samples as well as total petroleum hydrocarbon contents (TPH) were also investigated. Results showed that inoculation with ZB-01 biocenosis allowed the degradation of petroleum derivatives in the soil contaminated with diesel fuel and engine oil, with 82.3% and 75.4% efficiency, respectively. Applying bioremediation to all contaminated soils accelerated the process of recolonization by edaphic invertebrates. However, the 28-month period was too short to observe full population recovery in soils contaminated with diesel fuel and engine oil. Microbe-enhanced bioremediation accelerated recolonization by epigeic invertebrates on soil contaminated with diesel fuel, whereas it exerted inhibitory effect on recolonization of soil contaminated with engine oil (especially by Collembola). The observed discrepancies in the rates of recolonization for soils contaminated with petrol and diesel fuel that were still noted at the stage of no longer different TPH levels justify the idea to include the survey of edaphic faunal density as one of the parameters in the ecological risk assessment of various bioremediation techniques.  相似文献   

4.
A batch pot experiment using nine herbaceous species were conducted for peat enhanced rehabilitation of contaminated soil with oily sludge in the initial contents of 0%, 1.3%, 7.4%, and 12.2%, respectively. The results showed that petroleum hydrocarbons removal, plant growth indices and enzyme activities varied depending on plant species and oil contents. Cotton, ryegrass and tall fescue were effective in the rehabilitation of oily sludge contaminated soils. The total petroleum hydrocarbon (TPH) removal ranged from 30.0% to 40.0% after 170 days of treatment. Plant biomass was shown to be the preferred indicator for screening phytoremediation plant because it was closely correlated with TPH removal and enzyme activities. Peat-enhanced plant rehabilitation could be a good strategy for the treatment of oily sludge contaminated saline soils.  相似文献   

5.
Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.  相似文献   

6.
Research was conducted to estimate impact of the multiple bioaugmentation on the treatment of soil contaminated by fuels - diesel oil and aircraft fuel. The bacteria used to inoculate the remediation plots were isolated from the polluted soil and proliferated in field conditions. The amount of biomass applied to the polluted soil was set to ensure the total number of bacteria in soil 107-108 cfu/g d.w. The multiple inoculation of soil with indigenous bacteria active in diesel oil and engine oil (plot A) degradation increased bioremediation effectiveness by 50% in comparison to the non-inoculated control soil and by 30% in comparison to the soil that was inoculated only once. The multiple inoculation of soil with indigenous microorganisms was then applied in bioremediation of the soil polluted with double high concentration of diesel oil (soil B) and in bioremediation of the soil polluted with aircraft fuel (soil C). The process efficiency was 80% and 98% removal of TPH for soil B and C, respectively.  相似文献   

7.
Bioremediation of soil polluted by pentachlorophenol (PCP) is of great importance due to the persistence and carcinogenic properties of PCP. Phytoremediation has long been recognized as a promising approach for removal of PCP from soil. The present study was conducted to investigate the capability of four plant species; white clover, ryegrass, alfalfa, and rapeseed grown alone and in combination to remediate pentachlorophenol contaminated soil. After 60 days cultivation, white clover, raygrass, alfalfa, and rapeseed all significantly enhanced the degradation of PCP in soils. Alfalfa showed highest efficiency for the removal of PCP in single cropping flowed by rapeseed and ryegrass. Mixed cropping significantly enhanced the remediation efficiencies as compared to single cropping; about 89.84% of PCP was removed by mixed cropping of rapeseed and alfalfa, and 72.01% of PCP by mixed cropping of rape and white clover. Mixed cropping of rapeseed with alfalfa was however far better for the remediation of soil PCP than single cropping. An evaluation of soil biological activities as a monitoring mechanism for the bioremediation process of a PCP-contaminated soil was made using measurements of microbial counts and dehydrogenase activity.  相似文献   

8.
A pot culture experiment was conducted for 90 days for the evaluation of oil and total petroleum hydrocarbon (TPH) degradation in vegetated and non-vegetated treatments of real-field oil-sludge-contaminated soil. Five different treatments include (T1) control, 2% oil-sludge-contaminated soil; (T2), augmentation of microbial consortium; (T3), Vertiveria zizanioides; (T4), bio-augmentation along with V. zizanioides; and (T5), bio-augmentation with V. zizanioides and bulking agent. During the study, oil reduction, TPH, and degradation of its fractions were determined. Physico-chemical and microbiological parameters of soil were also monitored simultaneously. At the end of the experimental period, oil content (85%) was reduced maximally in bio-augmented rhizospheric treatments (T4 and T5) as compared to control (27%). TPH reduction was observed to be 88 and 89% in bio-augmented rhizospheric soil (T4 and T5 treatments), whereas in non-rhizospheric and control (T2 and T1), TPH reduction was 78 and 37%, respectively. Degradation of aromatic fraction after 90 days in bio-augmented rhizosphere of treatments T4 and T5 was found to 91 and 92%, respectively. In microbial (T2) and Vertiveria treatments (T3), degradation of aromatic fraction was 83 and 68%, respectively. A threefold increase in soil dehydrogenase activity and noticeable changes in organic carbon content and water-holding capacity were also observed which indicated maximum degradation of oil and its fractions in combined treatment of plants and microbes. It is concluded that the plant–microbe soil system helps to restore soil quality and can be used as an effective tool for the remediation of oil-sludge-contaminated sites.  相似文献   

9.
Phytoremediation is a natural, aesthetically pleasing, low-cost technology that employs plant-influenced microbial, chemical, and physical processes to remediate contaminated soils and waters. The Institute of Gas Technology (IGT) conducted a laboratory study to determine the potential of phytoremediation to remediate soils contaminated with polynuclear aromatic hydrocarbons (PAHs). The soils used for the study were collected from a former manufactured gas plant (MGP) site in Newark, NJ. Phytoremediation was assessed both as a primary remediation technology and as a final polishing step for soil treatment. The following three plant species were used for the 6-month laboratory study: alfalfa (Medicago sativa), switch grass (Panicum virgatum), and little bluestem grass (Schizachyrium scoparium). Using both alfalfa and switch grass for primary treatment of PAH-contaminated soil, a 57% reduction in total PAH concentration was observed after 6-months of treatment. Final polishing of that soil using alfalfa further reduced the total PAH concentration in that soil by 15%. Research is in progress with the objective of improving both the efficiency and the economics of phytoremediation for the cleanup of contaminated soils to environmentally acceptable endpoints at MGP sites.  相似文献   

10.
Bioremediation is a widely accepted technology for the remediation of hydrocarbon-contaminated soil. Treatability studies are usually carried out to assess the biodegradation potential of the contaminants and to design optimal treatments. Laboratory studies measuring soil respiration are often used. One method consists of monitoring the mineralization of a 14C-labeled hydrocarbon surrogate added to the contaminated soil. This study investigates the ability of this method to properly predict the removal of the hydrocarbon contaminants initially found in soils. Mineralization of 14C-labeled hexadecane was monitored in seven soils contaminated with various hydrocarbon mixtures, both fresh and weathered, in microcosm experiments. Reduction of total petroleum hydrocarbon (TPH) concentrations was measured simultaneously in separate microcosms. Both types of microcosms were subjected to the same amendment regimes. For all soils, poor correlation was observed between the mineralization and TPH reduction data sets. Mineralization data supported contaminants removal data in only one soil. Findings indicate that the radioactive surrogate method does not reliably predict the extent of, and the effect of amendments on, the removal of the hydrocarbons initially present in soil, and may therefore predict suboptimal treatment regimes. Recommendations for soil treatability protocols are provided.  相似文献   

11.
Phytoremediation can be a viable alternative to traditional, more costly remediation techniques. Three greenhouse studies were conducted to evaluate plant growth with different soil amendments in crude oil-contaminated soil. Growth of alfalfa (Medicago sativa L., cultivar: Riley), bermudagrass (Cynodon dactylon L., cultivar: Common), crabgrass (Digitaria sanguinalis, cultivar: Large), fescue (Lolium arundinaceum Schreb., cultivar: Kentucky 31), and ryegrass (Lolium multiflorum Lam., cultivar: Marshall) was determined in crude oil-contaminated soil amended with either inorganic fertilizer, hardwood sawdust, papermill sludge, broiler litter or unamended (control). In the first study, the addition of broiler litter reduced seed germination for ryegrass, fescue, and alfalfa. In the second study, bermudagrass grown in broiler litter-amended soil produced the most shoot biomass, bermudagrass produced the most root biomass, and crabgrass and bermudagrass produced the most root length. In the third study, soil amended with broiler litter resulted in the greatest reduction in gravimetric total petroleum hydrocarbon (TPH) levels across the six plant treatments following the 14-wk study. Ryegrass produced more root biomass than any other species when grown in inorganic fertilizer- or hardwood sawdust + inorganic fertilizer-amended soil. The studies demonstrated that soil amendments and plant species selection were important considerations for phytoremediation of crude oil-contaminated soil.  相似文献   

12.
Microbial community composition and activity were characterized in soil contaminated with lead (Pb), chromium (Cr), and hydrocarbons. Contaminant levels were very heterogeneous and ranged from 50 to 16,700 mg of total petroleum hydrocarbons (TPH) kg of soil(-1), 3 to 3,300 mg of total Cr kg of soil(-1), and 1 to 17,100 mg of Pb kg of soil(-1). Microbial community compositions were estimated from the patterns of phospholipid fatty acids (PLFA); these were considerably different among the 14 soil samples. Statistical analyses suggested that the variation in PLFA was more correlated with soil hydrocarbons than with the levels of Cr and Pb. The metal sensitivity of the microbial community was determined by extracting bacteria from soil and measuring [(3)H]leucine incorporation as a function of metal concentration. Six soil samples collected in the spring of 1999 had IC(50) values (the heavy metal concentrations giving 50% reduction of microbial activity) of approximately 2.5 mM for CrO(4)2- and 0.01 mM for Pb2+. Much higher levels of Pb were required to inhibit [14C]glucose mineralization directly in soils. In microcosm experiments with these samples, microbial biomass and the ratio of microbial biomass to soil organic C were not correlated with the concentrations of hydrocarbons and heavy metals. However, microbial C respiration in samples with a higher level of hydrocarbons differed from the other soils no matter whether complex organic C (alfalfa) was added or not. The ratios of microbial C respiration to microbial biomass differed significantly among the soil samples (P < 0.05) and were relatively high in soils contaminated with hydrocarbons or heavy metals. Our results suggest that the soil microbial community was predominantly affected by hydrocarbons.  相似文献   

13.
The efficiency of ready-to-use, source-separated, composted municipal organic wastes of Nigerian origin on degradation of soil total petroleum hydrocarbons (TPHs) in soils polluted with petroleum products (crude oil, diesel, and spent engine oil) was assessed in screen house experiments. The effect of compost:soil ratios and combined effect of compost-phytoremediation technique were also studied. TPH was determined spectrophotometrically, after extraction with 1:1 acetone-dichloromethane mixture at 425 nm. Soil pH, electrical conductivity, and phytotoxicity to seed germination and growth of maize (Zea mays L.) served as risk assessments on soil quality and evidence of recovery for the oil-impacted soil. Results showed that the treatments increased soil pH and electrical conductivity but reduced TPH. Reductions in TPH by compost technology ranged from 40% to 75.87%. Toxicity to seed germination reduced from 100% to 16.12%. Positive correlations were obtained for plant agronomical parameters and growth period, for all treatments, with coefficients in the range of .905 to .996, p < .05. This study revealed that ready-to-use composted waste has the potential for bioremediation of soils polluted with petroleum and petroleum products. This study is a contribution to the data bank of relatively simple bioremediation methods, suitable for workers in the developing countries, where there is no easy access to high-technology facilities. However, further development of this technique to achieve zero residual TPH is recommended.  相似文献   

14.
Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.  相似文献   

15.
石油污染土壤长料堆式异位生物修复技术研究   总被引:28,自引:0,他引:28  
应用长料堆式处理技术在长20米,宽10米的实用规律预制床上对辽河油田不同类型原油污染土壤进行了处理,处理工程设8个长条状堆料单元,每个堆料单元长8米,宽2米,高0.35米,当稀油,稠油和高凝油污染土壤中石油烃总量(TPH)为4.16-7.72g.100g^-1土时,经过53d的运行,PTH去除率45.19%-56.74%,本研究为石油污染土壤异位生物修复实用化提供了技术支持。  相似文献   

16.
Enhanced microbial bioremediation of petroleum hydrocarbon–contaminated (PHC) soils with the earthworm Alma millisoni and the bacterium Bacillus spp. was conducted. The petroleum-contaminated topsoils (PCTS) (0–15 cm) collected from motorcar mechanic workshops were thoroughly mixed, sieved, and air dried for 7 days. The pH, water holding capacity (WHC), total nitrogen (N), organic carbon (OC), heavy metal (HM), and bacteriological analysis of the soil samples were evaluated. The indigenous bacterial isolates were subjected to 1%, 5%, and 50% of spent engine oil (SEO), incubated for 7 days at 37°C, and the isolate with the highest tolerance pattern was used for the remediation. Out of four indigenous bacteria isolated, Bacillus spp. had the highest tolerance to SEO. Preliminary exposure assessments of A. millisoni to PHC soils (100%, 60%, 50%, and 40% PHC) were carried out using 48-h avoidance response, coiling exhibition, swollen clitelium, 14-day survival tests, and antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and glutathione peroxidase (GPx). Subsequently, four treatments of 1 kg soil mixed with 100%, 75%, 50%, and 0% PCTS were designed and spiked with 20 g of dried cow dung. Each of the treatments consisted of four setups, viz., A. millisoni alone, A. millisoni and Bacillus spp., Bacillus spp. alone, and control. The bacterial counts, total petroleum hydrocarbon (TPH), total and bioavailable HM, and total OC and N of the soils were evaluated every 7 days for 35 days. Significant increases in the activities of CAT, SOD, GPx, and GST compared with control were recorded in A. millisoni exposed to the various treatments. Treatment with combined A. millisoni and Bacillus spp. resulted in significant (p < .05) reduction in TPH, reduction in total and bioavailable heavy metals, and increased total OC and N of the soil compared with other treatments. The percentage reduction in TPH and heavy metals with concomitant increase in total OC and total N recorded in the 50% PHC soils followed the order A. millisoni and Bacillus spp. > A. millisoni alone > Bacillus spp. alone. Hence, enhanced bioremediation using A. millisoni and Bacillus spp. may be a good biocatalyst in the remediation of petroleum hydrocarbon–contaminated soils.  相似文献   

17.
This study reports on the use of Chromolaena odorata (L) R.M. King and H. Robinson, an Asteraceae (compositae) and an invasive alien weed in Africa for the remediation of soil contaminated with used engine oil. Used engine oilfrom a motor service garage was used to artificially contaminate soil taken from a garden to give total petroleum hydrocarbon (TPH) of between 1 and 40 g kg(-1). Chromolaena odorata (L), propagated by stem cuttings were transplanted into the contaminated soil and watered just enough to keep the soil at about 70% water holding capacity for 90 day. A set of control experiments containing 40 g kg(-1) used engine oil but without plants was set up. All experiments were set up in triplicates. Although the plants in the experiments containing higher than 30 g kg(-1) used engine oil showed relatively slower growth (fewer branches and leaves, and shorter in height) compared to those containing lower concentrations, the plants in all the experiments continued to grow until the end of the 90 day period. Residual TPH after 90 days showed that between 21 and 100% of oil was lost from the planted soil while only 11.5% was lost in the control, which did not contain plants during the same period. Analysis of plant tissues showed that both shoot and root tissues contained detectable levels of TPH and selected PAHs were also detectable. Biomass accumulation by Chromolaena odorata was affected adversely by concentrations of oil higher than 20 g kg(-1). Results of germination rates and germination energy measurements showed that Chromolaena odorata was able to reduce the toxicity of the contaminated soil after 90 days as compared to soils containing freshly contaminated soiL  相似文献   

18.
石油污染土壤堆制微生物降解研究   总被引:11,自引:0,他引:11  
采用异位生物修复技术堆式堆制处理方法 ,对辽河油田原油污染土壤进行了生物修复处理研究 .处理工程设 4个处理料堆单元 ,每个处理单元长 118.5cm ,宽 6 5 .5cm ,高 12 .5cm .研究结果表明 ,当进行处理的石油污染土壤中石油烃总量为 5 .2 2 g·10 0 g-1土时 ,利用黄孢原毛平革菌 (Phanerochaetechrysospori um) ,经过 5 5d的运行 ,石油烃总量去除率达 5 4.2 % .堆制处理中影响污染土壤石油烃总量生物降解的主要变化因子为污染土壤的O2 和CO2 含量、降解石油烃微生物的数量、污染土壤pH的变化 .通过监测这些数据的变化 ,可直接反映该工程的处理石油污染土壤的效果 .本处理工程采用定期通风措施 ,操作简单、运行费用低廉 ,为石油污染土壤生物修复实用化提供了一种简单易行的污染土壤清洁技术 .  相似文献   

19.
A time-course pot experiment was conducted with ryegrass grown in soil experimentally contaminated with diesel oil. Relationships among plant growth variables, microbial activity and the dissipation rate of diesel oil over time were analyzed.Results indicate that ryegrass growth can lower the dissipation threshold. The residual rate of diesel oil in the rhizosphere was 55% lower than in the corresponding root-free soil, and the threshold reduction occurred after the development of plant roots. In the rhizosphere, the number of aerobic bacteria and the amount of soil dehydrogenase activity were higher than in the root-free soil and also showed a correlation with the growth of roots.The dissipation rate of diesel oil showed a correlation with soil dehydrogenase activity in both the rhizosphere and the root-free soil. A positive correlation was observed between the growth rate of roots and soil dehydrogenase activity in the rhizosphere. Moreover, the dissipation rate per dehydrogenase activity of the rhizosphere was higher than in the root-free soil. Ryegrass roots were determined, therefore, to be effective at enhancing the biodegradation of diesel-contaminated soil.  相似文献   

20.
Biological treatment has become increasingly popular as a remediation method for soils and groundwater contaminated with petroleum hydrocarbon, chlorinated solvents, and pesticides. Bioremediation has been considered for application in cold regions such as Arctic and sub-Arctic climates and Antarctica. Studies to date suggest that indigenous microbes suitable for bioremediation exist in soils in these regions. This paper reports on two case studies at the sub-Antarctic Kerguelen Island in which indigenous bacteria were found that were capable of mineralizing petroleum hydrocarbons in soil contaminated with crude oil and diesel fuel. All results demonstrate a serious influence of the soil properties on the biostimulation efficiency. Both temperature elevation and fertilizer addition have a more significant impact on the microbial assemblages in the mineral soil than in the organic one. Analysis of the hydrocarbons remaining at the end of the experiments confirmed the bacterial observations. Optimum temperature seems to be around 10 degrees C in organic soil, whereas it was higher in mineral soil. The benefit of adding nutrients was much stronger in mineral than in the organic soil. Overall, this study suggests that biostimulation treatments were driven by soil properties and that ex situ bioremediation for treatment of cold contaminated soils will allow greater control over soil temperature, a limiting factor in cold climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号