首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionotropic glutamate receptor (iGluR) gene family has been widely studied in animals and is determined to be important in excitatory neurotransmission and other neuronal processes. We have previously identified ionotropic glutamate receptor-like genes (GLRs) in Arabidopsis thaliana, an organism that lacks a nervous system. Upon the completion of the Arabidopsis genome sequencing project, a large family of GLR genes has been uncovered. A preliminary phylogenetic analysis divides the AtGLR gene family into three clades and is used as the basis for the recently established nomenclature for the AtGLR gene family. We performed a phylogenetic analysis with extensive annotations of the iGluR gene family, which includes all 20 Arabidopsis GLR genes, the entire iGluR family from rat (except NR3), and two prokaryotic iGluRs, Synechocystis GluR0 and Anabaena GluR. Our analysis supports the division of the AtGLR gene family into three clades and identifies potential functionally important amino acid residues that are conserved in both prokaryotic and eukaryotic iGluRs as well as those that are only conserved in AtGLRs. To begin to investigate whether the three AtGLR clades represent different functional classes, we performed the first comprehensive mRNA expression analysis of the entire AtGLR gene family. On the basis of RT-PCR, all AtGLRs are expressed genes. The three AtGLR clades do not show distinct clade-specific organ expression patterns. All 20 AtGLR genes are expressed in the root. Among them, five of the nine clade-II genes are root-specific in 8-week-old Arabidopsis plants.  相似文献   

2.
Like their animal counterparts, plant glutamate receptor‐like (GLR) homologs are intimately associated with Ca2+ influx through plasma membrane and participate in various physiological processes. In pathogen‐associated molecular patterns (PAMP)‐/elicitor‐mediated resistance, Ca2+ fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca2+] ([Ca2+]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense‐related genes by OGs. In addition, wild‐type Col‐0 plants treated with the glutamate‐receptor antagonist 6,7‐dinitriquinoxaline‐2,3‐dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against Harabidopsidis. In addition, some OGs‐triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen‐mediated plant defense signaling pathways in Arabidopsis thaliana.  相似文献   

3.
4.
Cytosolic Ca2+ ([Ca2+]cyt) mediates diverse cellular responses in both animal and plant cells in response to various stimuli. Calcium oscillation amplitude and frequency control gene expression. In stomatal guard cells, [Ca2+]cyt has been shown to regulate stomatal movements, and a defined window of Ca2+ oscillation kinetic parameters encodes necessary information for long‐term stomatal movements. However, it remains unknown how the encrypted information in the cytosolic Ca2+ signature is decoded to maintain stomatal closure. Here we report that the Arabidopsis glutamate receptor homolog AtGLR3.1 is preferentially expressed in guard cells compared to mesophyll cells. Furthermore, over‐expression of AtGLR3.1 using a viral promoter resulted in impaired external Ca2+‐induced stomatal closure. Cytosolic Ca2+ activation of S‐type anion channels, which play a central role in Ca2+‐reactive stomatal closure, was normal in the AtGLR3.1 over‐expressing plants. Interestingly, AtGLR3.1 over‐expression did not affect Ca2+‐induced Ca2+ oscillation kinetics, but resulted in a failure to maintain long‐term ‘Ca2+‐programmed’ stomatal closure when Ca2+ oscillations containing information for maintaining stomatal closure were imposed. By contrast, prompt short‐term Ca2+‐reactive closure was not affected in AtGLR3.1 over‐expressing plants. In wild‐type plants, the translational inhibitor cyclohexamide partially inhibited Ca2+‐programmed stomatal closure induced by experimentally imposed Ca2+ oscillations without affecting short‐term Ca2+‐reactive closure, mimicking the guard cell behavior of the AtGLR3.1 over‐expressing plants. Our results suggest that over‐expression of AtGLR3.1 impairs Ca2+ oscillation‐regulated stomatal movements, and that de novo protein synthesis contributes to the maintenance of long‐term Ca2+‐programmed stomatal closure.  相似文献   

5.
Since the discovery of 20 genes encoding for putative ionotropic glutamate receptors in the Arabidopsis (Arabidopsis thaliana) genome, there has been considerable interest in uncovering their physiological functions. For many of these receptors, neither their channel formation and/or physiological roles nor their localization within the plant cells is known. Here, we provide, to our knowledge, new information about in vivo protein localization and give insight into the biological roles of the so-far uncharacterized Arabidopsis GLUTAMATE RECEPTOR3.5 (AtGLR3.5), a member of subfamily 3 of plant glutamate receptors. Using the pGREAT vector designed for the expression of fusion proteins in plants, we show that a splicing variant of AtGLR3.5 targets the inner mitochondrial membrane, while the other variant localizes to chloroplasts. Mitochondria of knockout or silenced plants showed a strikingly altered ultrastructure, lack of cristae, and swelling. Furthermore, using a genetically encoded mitochondria-targeted calcium probe, we measured a slightly reduced mitochondrial calcium uptake capacity in the knockout mutant. These observations indicate a functional expression of AtGLR3.5 in this organelle. Furthermore, AtGLR3.5-less mutant plants undergo anticipated senescence. Our data thus represent, to our knowledge, the first evidence of splicing-regulated organellar targeting of a plant ion channel and identify the first cation channel in plant mitochondria from a molecular point of view.In vertebrates, ionotropic glutamate receptors (iGluRs in animals) are ligand-gated cation channels that mediate the majority of the excitatory neurotransmission in the central nervous system (Dingledine et al., 1999). In the model plant Arabidopsis (Arabidopsis thaliana), 20 genes encoding homologs of animal iGluRs have been identified (Lam et al., 1998). According to phylogenetic analyses, the Arabidopsis GLUTAMATE RECEPTOR (AtGLR) homologs can be subdivided into three separate subgroups (Chiu et al., 1999, 2002). Some evidence for the channel-forming ability by plant ionotropic glutamate receptors (iGLRs) has been obtained only recently, and only for AtGLR3.4 and AtGLR1.4 expressed in heterologous systems (Vincill et al., 2012; Tapken et al., 2013). Studies with transgenic plants suggested roles of members of the plant GLR family in Ca2+ fluxes (AtGLR2; Kim et al., 2001), coordination of mitotic activity in the root apical meristem (Li et al., 2006), regulation of abscisic acid biosynthesis and water balance (AtGLR1.1; Kang and Turano, 2003; Kang et al., 2004), carbon/nitrogen sensing (AtGLR1.1; Kang and Turano, 2003), resistance against fungal infection (Kang et al., 2006), leaf-to-leaf wound signaling (Mousavi et al., 2013), and lateral root initiation (Vincill et al., 2013). Application of antagonists and agonists of animal iGluRs revealed that plant GLRs might be involved in the regulation of root growth and branching (Walch-Liu et al., 2006), in light signal transduction (Lam et al., 1998), and in the response to aluminum (Sivaguru et al., 2003). In various plant cell types, the agonists Glu- and Gly-induced plasma membrane depolarization and a rise in intracellular Ca2+ concentration that were inhibited by blockers of nonselective cation channels (NSCCs) and by antagonists of animal iGluRs (Dennison and Spalding, 2000; Dubos et al., 2003; Meyerhoff et al., 2005; Krol et al., 2007; Kwaaitaal et al., 2011; Michard et al., 2011). Furthermore, Glu-activated cation currents in patch-clamped root protoplasts were inhibited by NSCC blockers such as La3+ and Gd3+ (Demidchik et al., 2004). Therefore, it was proposed that plant iGLRs can form Ca2+-permeable NSCCs, are inhibited by animal iGluR antagonists, and might contribute to the shaping of plant Ca2+ signaling (McAinsh and Pittman, 2009). Studies using AtGLR3.3 mutant plants showed that intracellular Ca2+ rise and membrane depolarization induced by Glu in Arabidopsis hypocotyls and root cells are correlated with the presence of AtGLR3.3 (Qi et al., 2006; Stephens et al., 2008).However, most plant iGLRs, when expressed in heterologous systems, do not give rise to any current (e.g. in Xenopus spp. oocytes) or are toxic to host cells (e.g. in mammalian cells; Davenport, 2002). Recently, to examine whether AtGLR homologs possess functional ion channel domains, Tapken and Hollmann (2008) transplanted the pore loop together with two adjacent intracellular loops of 17 AtGLR subunits into two rat iGluR subunits and tested the resulting chimeric receptors for ion channel activity in the heterologous expression system Xenopus spp. oocyte. They showed that AtGLR1.1 and AtGLR1.4 have functional ion pore domains. The AtGLR1.1 pores are permeable to Na+, K+, and Ca2+ and are blocked by the nonspecific cation channel blocker La3+ (Tapken and Hollmann, 2008). Recent work has demonstrated that the expression of full-length AtGLR1.4 in oocytes gives rise to an amino acid-activated, nonselective, calcium-permeable channel that was found to be inhibited by the animal iGluR modulators 6,7-dinitroquinoxaline-2,3-dione and 6-cyano-7-nitroquinoxaline-2,3-dione (Tapken et al., 2013).The study of these channels has so far been restricted to those members that are located in the plasma membrane and were proved to be functional in the expression systems used. Instead, various localization prediction tools suggest that some of the plant GLRs might have chloroplast and mitochondrial targeting. In general, determining the subcellular localization of a protein is an important step toward understanding its function. We recently reported the localization of GLR3.4 to the inner chloroplast membrane (Teardo et al., 2011), which was also shown to harbor a 6,7-dinitroquinoxaline-2,3-dione-sensitive, calcium-permeable channel activity (Teardo et al., 2010). No other studies have addressed the eventual subcellular localization of other putative Glu receptors.In this work, we show that an isoform of GLR3.5 is efficiently targeted to the mitochondria. Functional expression of the channel in this organelle is indicated by the fact that its absence in knockout plants leads to a dramatically altered ultrastructure of mitochondria that impacts the plant physiology, ultimately leading to an anticipated senescence.  相似文献   

6.
将拟南芥基因AtGLR1.4启动子驱动的AtGLR1.4基因与绿色荧光蛋白(GFP)基因融合后,利用根瘤农杆菌介导瞬时转化法(Fast Agro-mediated Seedling Transfomation,FAST)浸染拟南芥幼苗,对其进行亚细胞定位的研究。转基因植株通过激光共聚焦扫描显微镜的观察,发现GFP绿色荧光在叶片表皮细胞的细胞膜上特异表达,表明At-GLR 1.4蛋白定位于细胞质膜上,为其后续的功能研究提供了线索。  相似文献   

7.
8.
An appreciable number of potassium channels mediating K+ uptake have been identified in higher plants. Promoter-beta-glucuronidase reporter gene studies were used here to demonstrate that SKT1, encoding a potato K+ inwardly rectifying channel, is expressed in guard cells in addition to KST1 previously reported. However, whereas KST1 was found to be expressed in essentially all mature guard cells, SKT1 expression was almost exclusively restricted to guard cells of the abaxial leaf epidermis. This suggests that different types of K+ channel subunits contribute to channel formation in potato guard cells and therefore differential regulation of stomatal movements in the two leaf surfaces. The overlapping expression pattern of SKT1 and KST1 in abaxial guard cells indicates that K+in channels of different sub-families contribute to ionic currents in this cell type, thus explaining the different properties of channels expressed solely in heterologous systems and those endogenous to guard cells. Interaction studies had previously suggested that plant K+ inward rectifiers form clusters via their conserved C-terminal domain, KT/HA. K+ channels co-expressed in one cell type may therefore form heteromers, which increase functional variability of K+ currents, a phenomenon well described for animal voltage-gated K+ channels. Co-expression of KST1 and SKT1 in Xenopus oocytes resulted in currents with an intermediate sensitivity towards Cs+, suggesting the presence of heteromers, and a sensitivity towards external Ca2+, which reflected the property of the endogenous K+in current in guard cells. Modulation of KST1 currents in oocytes by co-expressing KST1 with a SKT1 pore-mutant, which by itself was not able to confer activating K+ currents, demonstrated the possibility that KST1 and SKT1 co-assemble to hetero-oligomers. Furthermore, various C-terminal deletions of the mutated SKT1 channel restored KST1 currents, showing that the C-terminal KT motif is essential for heteromeric channel formation.  相似文献   

9.
10.
Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that mediate fast excitatory neurotransmission in the mammalian central nervous system. In the model plant Arabidopsis thaliana, a large family of 20 genes encoding proteins that share similarities with animal iGluRs in sequence and predicted secondary structure has been discovered. Members of this family, termed AtGLRs (A. thaliana glutamate receptors), have been implicated in root development, ion transport, and several metabolic and signalling pathways. However, there is still no direct proof of ligand-gated ion channel function of any AtGLR subunit. We used a domain transplantation technique to directly test whether the putative ion pore domains of AtGLRs can conduct ions. To this end, we transplanted the ion pore domains of 17 AtGLR subunits into rat α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (GluR1) and kainate (GluR6) receptor subunits and tested the resulting chimaeras for ion channel function in the Xenopus oocyte expression system. We show that AtGLR1.1 and AtGLR1.4 have functional Na+-, K+-, and Ca2+-permeable ion pore domains. The properties of currents through the AtGLR1.1 ion pore match those of glutamate-activated currents, depolarisations, and glutamate-triggered Ca2+ influxes observed in plant cells. We conclude that some AtGLRs have functional non-selective cation pores.  相似文献   

11.
12.
Plant K+ channel alpha-subunits assemble indiscriminately.   总被引:4,自引:0,他引:4       下载免费PDF全文
In plants a large diversity of inwardly rectifying K+ channels (K(in) channels) has been observed between tissues and species. However, only three different types of voltage-dependent plant K+ uptake channel subfamilies have been cloned so far; they relate either to KAT1, AKT1, or AtKC1. To explore the mechanisms underlying the channel diversity, we investigated the assembly of plant inwardly rectifying alpha-subunits. cRNA encoding five different K+ channel alpha-subunits of the three subfamilies (KAT1, KST1, AKT1, SKT1, and AtKC1) which were isolated from different tissues, species, and plant families (Arabidopsis thaliana and Solanum tuberosum) was reciprocally co-injected into Xenopus oocytes. We identified plant K+ channels as multimers. Moreover, using K+ channel mutants expressing different sensitivities to voltage, Cs+, Ca2+, and H+, we could prove heteromers on the basis of their altered voltage and modulator susceptibility. We discovered that, in contrast to animal K+ channel alpha-subunits, functional aggregates of plant K(in) channel alpha-subunits assembled indiscriminately. Interestingly, AKT-type channels from A. thaliana and S. tuberosum, which as homomers were electrically silent in oocytes after co-expression, mediated K+ currents. Our findings suggest that K+ channel diversity in plants results from nonselective heteromerization of different alpha-subunits, and thus depends on the spatial segregation of individual alpha-subunit pools and the degree of temporal overlap and kinetics of expression.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号