首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the dynamic effect of the emulsification process on emulsion droplet size in manufacturing microspheres using ethyl acetate as an organic solvent. A dispersed phase consisting of poly(lactide-co-glycolide) and ethyl acetate was emulsified in a poly(vinyl alcohol) aqueous solution for a predetermined time ranging from 2 to 9, 16, 23, 30, 40, 50, or 60 minutes. Ethyl acetate was then quickly extracted to transform emulsion droplets into solidified microspheres, and their size distribution was determined. This experimental design allowed quantification of the size distribution of emulsion droplets over the course of emulsification. When emulsification time was extended from 2 to 60 minutes, the emulsion droplets decreased in size from 98.1 to 50.3 microm and their surface area increased from 0.07 to 0.29 m2/g. Overall, prolonging emulsification time up to 60 minutes resulted in the progressive evolution of smaller emulsion droplets (1-60 microm) and the simultaneous disappearance of larger ones (> 81 microm). Increases in the total number of microspheres and their surface area were caused mainly by continuous fragmentation of emulsion droplets before ethyl acetate extraction. The increase in the smaller microsphere population might also be due in part to shrinkage of microspheres. These results show that the onset of ethyl acetate extraction influenced the kinetics of the breakup and formation of emulsion droplets, thereby affecting to a great extent the size distribution of microspheres.  相似文献   

2.
Single-molecule PCR using water-in-oil emulsion   总被引:2,自引:0,他引:2  
Polymerase chain reaction (PCR) using a single molecule of DNA is very useful for analysis, detection and cloning of the desired DNA fragment. We developed a simple PCR method utilizing a water-in-oil (W/O) emulsion that included numerous droplets of reaction mixture in bulk oil phase. These droplets, which were stable even at high temperatures, functioned as micro-reactors. This allows the effective concentration of template DNA to be increased, even for low concentrations of template DNA. The present method consists of a two-step thermal cycle. The first step was carried out using the W/O emulsion. During this step, the template DNA was amplified in the limited volume of the droplets in the W/O emulsion. The W/O emulsion was broken and the second PCR step was carried out. This method can be easily applied to amplify a single DNA molecule.  相似文献   

3.
A myocardial glycolipid (P3) mixed with protein antigens in oil-in-water emulsion induced lasting delayed hypersensitivity (DH) and granulomatous inflammation after intradermal injection into guinea pigs. This did not occur when P3 and bovine serum albumin (BSA) were given in Freund's incomplete adjuvant. The oil-in-water emulsions consisted of microscopic oil droplets suspended in aqueous medium. By separating oil and aqueous phases from BSA + P3 emulsion it was shown that antigen retained with oil droplets led to DH and granuloma formation. The association of antigen with oil droplets was P3 dependent and was quantitated with 125I-labeled BSA. The same phenomenon occurred with 125I-labeled rabbit gamma-globulin (RGG) + P3 emulsion. Fluorescein-conjugated RGG was observed in a particulate state within or on oil droplets in emulsion containing P3. These physical characteristics of antigen + P3 emulsion appeared to be important for immunogenicity.  相似文献   

4.
The emulsion phase formed within the stomach and duodenum during digestion of a fatty meal has been modelled using two physiological surfactants, the phospholipid L-alpha-phosphatidylcholine (PC) and the bile salt sodium taurocholate (NaT). Upon dilution of the phospholipid stabilised emulsions with a solution of NaT the bile salt became incorporated into the oil/water interface imparting a negative charge to the droplet surface. The magnitude of the droplet microelectrophoretic mobility for the mixed PC and NaT system was 47% of that found for emulsion droplets stabilised by NaT alone. But the electrostatic repulsion between droplets was not sufficient to account for the observed improvement in emulsion stability to coalescence. It is suggested that a residual liquid crystalline phospholipid interface is present imparting a significant steric component to the stabilisation of the emulsions droplets.  相似文献   

5.
We present findings on the influence of interfacial layer composition on the colloidal interactions and associated structural and material properties of oil-in-protein gel emulsions, as applied to a model Mozzarella cheese analogue. Model cheese samples were produced through thermal mixing of pre-prepared oil-in-water emulsions with a renneted casein gel. Sodium caseinate and Tween 20 were used as the emulsifiers. Microstructural analysis showed sodium caseinate stabilised droplets to be homogeneously dispersed within the cheese structure, whilst droplets stabilised by Tween 20 were phase concentrated into localised fat domains within the continuous protein network. Particle size measurements determined that, on chilled storage, the droplets in these localised regions underwent extensive partial coalescence, whilst the homogenously distributed caseinate droplets showed little change in droplet size. Small deformation rheology (4 to 80 °C) determined the sodium caseinate emulsion as providing a reinforcing effect on the protein network across the entire temperature range, while the Tween 20 emulsion was observed to mechanically strengthen the cheese structure at only at temperatures for which the fat phase was solid whilst serving to weaken the structure on transitioning to a molten state. Differences in droplet structure and stability were determined as influencing cheese melt and flow characteristics. During melting, no oiling-off observed for cheese samples comprising sodium caseinate stabilised droplets, compared to Tween 20 stabilised emulsions where extensive oiling-off was observed. Findings corroborate the hypothesis that caseinate coated droplets behave as active fillers within the protein network, whilst the Tween 20 stabilised emulsion are non-interactive.  相似文献   

6.
Lee  Boon-Beng  Bhandari  Bhesh R.  Ching  Su Hung  Howes  Tony 《Food biophysics》2019,14(4):365-382

The ability of encapsulation to protect hydrophilic–bioactive food compounds from harsh environments can be improved by strengthening the hydrophilic barriers of encapsulated food compounds in Ca-alginate microgel particles via the integration of oil into the microgels. This study introduces a one-step procedure to integrate water-in-oil (W/O) emulsion droplets directly into Ca-alginate microgels during the production using the impinging aerosols system. A water-in-oil-in-water (20 kg m−3 alginate solution) (W1/O/W2) double emulsion was prepared using a high speed homogeniser followed by a microfluidiser. The microstructure of the W1/O/W2 emulsion was analysed using optical and fluorescence microscopy. The mean diameters of the W1/O/W2 emulsion droplets and resultant microgels were in the range of 27.8–65.4 μm and 160–420 μm, respectively. Food dye was used as a proxy for a hydrophilic food compound and its release from the microgels was significantly decreased when it was encapsulated in the W/O emulsion droplets. Based on the numerical analysis, the presence of the W/O emulsion droplets in the gel network reduced the degree of gelation of the microgel because the diffusion rate of Ca2+ cation in the microgel is reduced. The degree of gelation of the W/O emulsion droplets encapsulated microgel is 0.6 when the diameter of the droplet is reduced to 77.5 μm and the concentration of CaCl2 solution is doubled to 22 kg m−3. The potentiality of the impinging aerosol system to produce Ca-alginate microgels to encapsulate hydrophilic compounds with improved barriers is presented in this work.

  相似文献   

7.
Emulsion polymerase chain reaction, an effective amplification, can make millions of templates could be individually amplified within a single tube. Here we constructed and improved a low melting point agarose-emulsion method to promote the specific sequences amplification effectively. Artificial Lactobacillus Plasmid as template was amplified and clear fluorescence images of the agarose beads were obtained. The Real-time PCR data showed that agarose-emulsion PCR clearly indicated that DNA can be amplified in agarose droplets. Overall, our study effectively overcame the difficulty of formation of uniform emulsion droplets, negative effect on recombination of homologous regions of DNA and generation of void emulsion droplets. This method increases the accuracy with amplification, reduces the influence of uncertainties and provides the reliable data for further experiment.  相似文献   

8.
Microparticles continue to receive widespread attention from food professionals because of their potential use as carriers of bioactive substances. This study demonstrates a novel method to prepare casein microparticles, which co-assemble with α-tocopherol (αT) into emulsion droplets. When the particles were extracted from the pectin matrix via enzymatic degradation, they remained stable in a buffer solution for at least 3 weeks. Optical microscopy showed that the size distribution of the microparticles is between 5 μm and 50 μm, which is in accordance with previous observations in blend films. High-performance liquid chromatography revealed that the amounts of αS1- and κ-casein in the microparticles are significantly higher than those in native casein micelles. Confocal Raman microscopy showed that in the presence of α-tocopherol, the microparticles assemble into emulsion droplets, with phenol in the core and casein in the shell. Herein, we demonstrate a new method to form casein-based emulsion droplets for potential use as carriers of bioactive substances.  相似文献   

9.
Two types of experiments were performed to study the reversibility of interfacial adsorption of pancreatic lipase (PL) to fat droplets during lipolysis. Lipolysis was measured in olive oil/gum arabic emulsions containing radiolabeled triolein in the presence of bile salts and lecithin at rate-limiting concentrations of porcine PL (PPL) or human PL (HPL). The lipolysis rate in a labeled emulsion, i.e. release of [(14)C]oleic acid, was immediately reduced by around 50% upon dilution with an equal amount of an unlabeled emulsion. Further, lipolysis was rapidly and completely suppressed when a non-exchanging lipase inhibitor was present in the second emulsion. These results indicate hopping of lipase between emulsion droplets. Alternative explanations were excluded. Hopping of PL between triolein droplets stabilized with gum arabic at supramicellar bile salt concentrations was observed only in the presence, not in the absence, of lecithin. Displacement from a trioctanoin-water interface of active HPL by an inactive mutant (S152G) was studied in the presence of bile salts by measuring HPL distribution between the water phase and the oil-water interface. Colipase was limiting for HPL binding to the oil-water interface (colipase to lipase molar ratio: 0.5) and, thus, for lipolysis. Upon adding S152G, which has the same affinity for colipase, inactive and active HPL were found to compete for binding at the oil-water interface. When equal amounts of HPL and HPL S152G were used, the lipolysis rate dropped to half the maximum rate recorded with HPL alone, suggesting that half the active HPL was rapidly desorbed from the oil-water interface. Therefore, under various conditions, PL does not remain irreversibly adsorbed to the oil-water interface, but can exchange rapidly between oil droplets, via an equilibrium between soluble and lipid-bound PL.  相似文献   

10.
Water-in-oil (w/o) emulsions can be used to compartmentalize and select large gene libraries for a predetermined function. The aqueous droplets of the w/o emulsion function as cell-like compartments in each of which a single gene is transcribed and translated to give multiple copies of the protein (e.g., an enzyme) it encodes. While compartmentalization ensures that the gene, the protein it encodes, and the products of the activity of this protein remain linked, it does not directly afford a way of selecting for the desired activity. Here we show that re-emulsification of w/o emulsions gives water-in-oil-in-water (w/o/w) emulsions with an external (continuous) water phase through which droplets containing fluorescent markers can be isolated by fluorescence-activated cell sorting (FACS). These w/o/w emulsions can be sorted by FACS, while the content of the aqueous droplets of the primary w/o emulsion remains intact. Consequently, genes embedded in these water droplets together with a fluorescent marker can be isolated and enriched from an excess of genes embedded in water droplets without a fluorescent marker. The ability of FACS instruments to sort up to 40000 events per second may endow this technology a wide potential in the area of high-throughput screening and the directed evolution of enzymes.  相似文献   

11.
The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer–chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze–thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze–thaw cycling. After storing the emulsion at 4°C, 25°C, and 37°C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37°C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.  相似文献   

12.
Traumatic brain injury (TBI) is a major cause of mortality and disability throughout the world. Progesterone (PROG) plays an important role in neurologic treatment. The aim of this study was to develop a progesterone formulation with good physical and chemical stability. Progesterone intravenous lipid emulsion (PILE) was prepared based on one-factor-at-a-time experiments and orthogonal design. The optimal PILE was evaluated for mean particle size, particle size distribution, zeta potential, morphology, pH, osmolarity, entrapment efficiency, storage stability, and pharmacokinetics in ICR mice compared with the commercial progesterone products. The droplets of PILE had the smallest possible diameters of 218.0?±?1.8 nm and adequate zeta potential of ?41.1?±?0.9 mV. The volume percentage of droplets exceeding 5 μm (PFAT5) of PILE was 0.003?±?0.0015% and much less than the specified standard. The TEM imaging proved that emulsion droplets had a smooth spherical appearance. Chemically and physically stable PILE was obtained with excellent entrapment efficiency that was up to 95.23%, with suitable pH at 7.15?±?0.01 and osmolarity at 301.3?±?1.2 mOsmol/l. Storage stability tests indicated that the emulsion was stable long term under ambient temperature conditions. Animal studies demonstrated that the emulsion was more effective with the higher progesterone concentration in the brain compared with commercial products. Therefore, the optimized PILE would offer great promise as a means of progesterone delivery for TBI therapy.  相似文献   

13.
The release kinetics of four model aroma compounds from coarse (d 32 = 1.0 μm) and fine (d 32 = 0.25 μm) eicosane and hydrogenated palm stearin (HPS) emulsions prepared with either solid or liquid lipid droplets were measured using a model mouth instrument. For both lipids, the release of aroma compounds from emulsions with solid droplets was higher than from emulsions with liquid droplets. This difference was greater for less polar aroma compounds. The release from solid eicosane droplets increased with particle size but no such effect was observed for HPS emulsions, however, the release from solid eicosane was higher than solid HPS. The initial aroma release profile of the solid droplet emulsion matches that of a similar liquid oil emulsion but requires much less added aroma. Meeting presentation: Presented at 98th AOCS Annual Meeting and Expo in Quebec City, Canada.  相似文献   

14.
Water-in-oil emulsions provide an alternative for long-term stabilization of microorganisms. Maintaining physical stability of the emulsion and cell viability is critical for large-scale application. Water-in-oil (W/O) emulsions were prepared with the biolarvacide Lagenidium giganteum and the green alga Chlorella vulgaris. Physical stability was measured via light scattering measurements of the internal phase droplets and cell viability was measured by plating and enumerating colony forming units. Emulsions were demonstrated to stabilize L. giganteum and C. vulgaris for more than 4 months without refrigeration. Introducing nutrients into the internal phase of W/O emulsions without cells had no significant effect on changes in aqueous phase droplet size dynamics. Internal phase droplet size changes that occurred over time were greater in the presence of cells. Increases in droplet size were correlated with cell death indicating measurement of internal phase droplet size changes may be an approach for monitoring declines in cell viability during storage.  相似文献   

15.
Gao S  Wang Y  Wang T  Luo G  Dai Y 《Bioresource technology》2009,100(2):996-999
In this work, methyl-modified silica aerogels, a new kind of macro-porous material with high porosity, were used as carriers to immobilize lipase by adsorption. SEM, TEM, nitrogen adsorption device, and thermogravimetric analysis were used to characterize the properties of modified aerogels. The surface area was 395.6 m(2)/g, and the average pore diameter was 68.72 nm. The contact angle of aerogel particles increased from 20.9 degrees to 99.2 degrees after methyl modification. Reaction characteristics of the material after enzyme loading were also discussed. The results showed that adsorption capacity could reach 67.42 mg/g; and the maximal enzyme activity was 19.87 micromol min(-1)mg(-1) (protein), and activity retention could reach 56.44%. It is worth mentioning that the amount of modified aerogels added had significant effects on the diameter of droplets and the mass transfer behavior of substrates in the reaction emulsion. Online microscope was used to visualize the droplets in the emulsion, where the aerogel particles were observed locating at the interface of oil and water. The average diameter of droplets reached the minimum when 0.06 g of modified aerogels was added into the reaction emulsion which contained 10 ml of oil and 10 ml of phosphate buffer solution. The phenomenon was resulted from the wettability of methyl-modified silica aerogels.  相似文献   

16.
Oil-in-water emulsions are used as vaccine adjuvants, but the mechanism of action remains unknown. In this paper we used phagocytes (monocytes, macrophages, dendritic cells) and non-phagocytic cells (fibroblasts, skeletal muscle cells) to study internalization of emulsions in vitro, and to characterize the influence of emulsion uptake on cellular metabolism of neutral lipids. We found that all tested cell types endocytose the emulsion droplets, and that the uptake leads to an acute accumulation of neutral lipids in the form of cytoplasmic lipid droplets. The accumulated lipids comprise not only the delivered squalene, but also cholesteryl esters, triacylglycerols, fatty acids, and diacylglycerols. Lipid metabolism and innate immunity are closely linked, and accumulation of lipids in non-adipose tissues is known to induce inflammatory conditions. We propose that one aspect of o/w emulsion adjuvanticity could depend on their ability to rapidly change lipid metabolism of the target cells.  相似文献   

17.
In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface‐active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off‐line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble‐induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery.  相似文献   

18.
The objective of this study was to investigate the influence of interfacial composition and electrical charge on the in vitro digestion of emulsified fats by pancreatic lipase. An electrostatic layer-by-layer deposition technique was used to prepare corn oil-in-water emulsions (3 wt% oil) that contained droplets coated by (1) lecithin, (2) lecithin–chitosan, or (3) lecithin–chitosan–pectin. Pancreatic lipase (1.6 mg mL−1) and/or bile extract (5.0 mg mL−1) were added to each emulsion, and the particle charge, droplet aggregation, and free fatty acids released were measured. In the presence of bile extract, the amount of fatty acids released per unit amount of emulsion was much lower in the emulsions containing droplets coated by lecithin–chitosan (38 ± 16 μmol mL−1) than those containing droplets coated by lecithin (250 ± 70 μmol mL−1) or lecithin–chitosan–pectin (274 ± 80 μmol mL−1). In addition, there was much more extensive droplet aggregation in the lecithin–chitosan emulsion than in the other two emulsions. We postulated that lipase activity was reduced in the lecithin–chitosan emulsion as a result of the formation of a relatively thick cationic layer around each droplet, as well as the formation of large flocs, which restricted the access of the pancreatic lipase to the lipids within the droplets. Our results also suggest that droplets initially coated by a lecithin–chitosan–pectin layer did not inhibit lipase activity, which may have been because the chitosan–pectin desorbed from the droplet surfaces thereby allowing the enzyme to reach the lipids; however, further work is needed to establish this. This information could be used to create food emulsions with low caloric level, or to optimize diets for individuals with lipid digestion problems.  相似文献   

19.
Using confocal microscopy, we studied the effect of heating (up to 85°C) on the microstructure of β-lactoglobulin-stabilized emulsions (20 vol% oil, pH 6.8) containing excess protein (total protein content 13.2%). Two different fluorescent dyes were used to separately visualize the oil droplets and the protein. In overlay micrographs, their location with respect to each other could then be determined. In the presence of a low salt concentration, flocculation of the emulsion without surfactant was inhibited, by a mechanism analogous to the “salting-in” of aqueous protein solutions. Addition of the anionic surfactant sodium dodecyl sulfate (SDS) caused weak flocculation, probably as a result of the formation of protein−SDS complexes. The final heat-set emulsion contained distinct pores for a surfactant/protein ratio of R = 1, but no pores for R = 2. Addition of the cationic surfactant cetyl trimethyl ammonium bromide (CTAB) caused strong aggregation, as indicated by microscopic observation of the concentrated emulsion and light scattering of the diluted emulsion. For R = 1 with CTAB, there were aggregates consisting of oil droplets and excess protein. At R = 2, almost all the excess protein was aggregated into separate protein flakes. In the final emulsion gels containing CTAB, the protein was more spread out. Differing structural behavior with anionic and cationic surfactants has been interpreted in terms of different protein−surfactant interactions in aqueous solution and at the oil−water interface, both before and after protein denaturation.  相似文献   

20.
Candida tropicalis was cultured with n-hexadecane, dispersed in water as submicron droplets, as the only carbon substrate; the emulsion being fed continuously into a fermentor containing only an aqueous medium (fed-batch culture). The results have demonstrated that the organism takes up hydrocarbon accommodated in the aqueous phase as submicron droplets. The cell/substrate yield for the linear growth phase, where growth was limited by the supply of the substrate, was much higher than the yield for the exponential growth phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号