首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The leopard shark (Triakis semifasciata) is one of the most common species of elasmobranch in California, and uses the shallow bays and estuaries of California extensively throughout its life history. To examine the role that tides and time of day play on the distribution and movements of leopard sharks in an estuarine environment, a total of 22 female leopard sharks (78–140 cm TL) were tagged with acoustic transmitters in Elkhorn Slough, California, USA. Eight sharks were manually tracked for 20–71.5 h, and 13 sharks were monitored for 4–280 days using an array of acoustic receivers. Overall, the distribution and movements of sharks were strongly influenced by the tides and to a lesser extent by period of day, although general patterns of movement differed depending on what region of Elkhorn Slough the sharks were using. In the main channel of Elkhorn Slough, sharks generally moved with the tide, maximizing the area over which they could forage on a more dispersed prey field. Conversely, leopard sharks within the Elkhorn Slough National Estuarine Research Reserve regularly swam against strong currents to remain in proximity to the intertidal mudflats. This high degree of fidelity to a specific region was probably due to an abundance of important prey in the area. These results indicate that movements, and thus the foraging ecology, of leopard sharks show a high degree of plasticity and are influenced by tidal stage, tidal current, availability of suitable habitat, and availability and distribution of important prey items.  相似文献   

2.
Many ecosystems are created by the presence of ecosystem engineers that play an important role in determining species' abundance and species composition. Additionally, a mosaic environment of engineered and non-engineered habitats has been shown to increase biodiversity. Non-native ecosystem engineers can be introduced into environments that do not contain or have lost species that form biogenic habitat, resulting in dramatic impacts upon native communities. Yet, little is known about how non-native ecosystem engineers interact with natives and other non-natives already present in the environment, specifically whether non-native ecosystem engineers facilitate other non-natives, and whether they increase habitat heterogeneity and alter the diversity, abundance, and distribution of benthic species. Through sampling and experimental removal of reefs, we examine the effects of a non-native reef-building tubeworm, Ficopomatus enigmaticus, on community composition in the central Californian estuary, Elkhorn Slough. Tubeworm reefs host significantly greater abundances of many non-native polychaetes and amphipods, particularly the amphipods Monocorophium insidiosum and Melita nitida, compared to nearby mudflats. Infaunal assemblages under F. enigmaticus reefs and around reef's edges show very low abundance and taxonomic diversity. Once reefs are removed, the newly exposed mudflat is colonized by opportunistic non-native species, such as M. insidiosum and the polychaete Streblospio benedicti, making removal of reefs a questionable strategy for control. These results show that provision of habitat by a non-native ecosystem engineer may be a mechanism for invasional meltdown in Elkhorn Slough, and that reefs increase spatial heterogeneity in the abundance and composition of benthic communities.  相似文献   

3.
The performance of a species can be significantly altered by subtle changes in the physical environmental. The intertidal barnacle Balanus glandula is predominantly an open coast species in the Northeast Pacific. However, B. glandula commonly inhabits estuaries where environmental conditions such as salinity and temperature drastically differ from the open coast. We used survivorship and growth rates as a measure of performance in recently metamorphosed laboratory reared juvenile B. glandula outplanted along an environmental gradient at the mouth, mid-estuarine, and riverine end of the South Slough Estuary, Oregon, USA. Juvenile performance was highly variable over spatial and temporal scales and dependent upon existing environmental conditions. Surprisingly, along this estuarine gradient, juveniles performed better at a mid-estuarine location than at the mouth of the estuary. Typically, the riverine end of the estuary was the least suitable habitat along the estuarine gradient due to high juvenile mortality and a low growth rate. Although seasonally variable, survivorship and growth decreased with height along a vertical intertidal gradient as well. In a reciprocal transplant experiment, populations from both ends of the estuarine gradient displayed similar survivorship and growth rates. Our results demonstrate that the interactions of environmental conditions that vary temporally and spatially along a gradient strongly affect the success of an individual surviving and prospering during the early juvenile period.  相似文献   

4.
Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily invaded. We used a novel, trait‐based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait differences between groups allows us to predict changes in the exotic‐native balance under climate change scenarios. Exotic species are more likely to be annual, taller, with larger leaves, larger seeds, higher specific leaf area, and higher leaf N percentage than native species. Across the state, all these traits are associated with regions with higher temperature. Therefore, we predict that increasing temperatures will favor trait states that tend to be possessed by exotic species, increasing the dominance of exotic species. This prediction is corroborated by the current distribution of exotic species richness relative to native richness in California; warmer areas contain higher proportions of exotic species. This pattern was very well captured by a simple model that predicts invasion severity given only the trait–climate relationship for native species and trait differences between native and exotic species. This study provides some of the first evidence for an important interaction between climate change and species invasions across very broad geographic and taxonomic scales.  相似文献   

5.
Aspects of denitrification and benzoate degradation were studied in two estuarine microbial mat communities on the California coast by measuring the depth distributions of potential denitrification rates, genetic potential for denitrification, nitrate concentration, benzoate mineralization rates, total bacterial abundance, and abundance of a denitrifying strain (TBD-8b) isolated from one of the sites. Potential denitrification was detected in microbial mat cores from both Elkhorn Slough and Tomales Bay. Maximum denitrification rates were more than two orders of magnitude higher at Elkhorn Slough (3.14 mmol N m−2 d−1) than at Tomales Bay (0.02 mmol N m−2 d−1), and at both sites, the maximum rates occurred in the 0–2 mm depth interval. Ambient pore [NO3+NO2] was substantially higher at Elkhorn Slough than at Tomales Bay. Incorporation and mineralization of benzoate was maximal near the mat surface at Elkhorn Slough. The areal rate of benzoate utilization was 1045 nmol C m−2 d−1, which represented utilization of 70% of the added substrate in 24 h. Total bacterial and TBD-8b abundances were greatest near the surface at both Tomales Bay and Elkhorn Slough, and TBD-8b represented less than 0.2% of the total. Genetic potential for denitrification, quantified by hybridization with a nitrite reductase gene fragment, was present below the mat surface at average levels representing presence of the gene in approximately 10% of the total cells.  相似文献   

6.
Aim Historical information about source populations of invasive species is often limited; therefore, genetic analyses are used. We compared inference about source populations from historical and genetic data for the oyster‐associated clam, Gemma gemma that invaded California from the USA Atlantic coast. Location Mid‐Atlantic (North Carolina, Maryland), Northeastern (New Jersey, New York, Massachusetts) and the California coasts (Elkhorn Slough, San Francisco Bay, Bolinas Lagoon, Tomales Bay, Bodega Harbor). Methods The documented history of transplantation of Eastern oysters to California was reviewed. Cytochrome c oxidase subunit I (COI) sequences from recent and archived clams were examined in a haplotype network. We used AMOVA to detect geographic genetic structure and a permutation test for significant reductions in diversity. Results Chesapeake Bay oysters were transplanted to New York prior to shipment to San Francisco Bay and from there to peripheral bays. Gemma in the Northeastern and Mid‐Atlantic regions were genetically differentiated. In California, populations in Bodega Harbor and Tomales Bay were genetically similar to those in the Mid‐Atlantic area while clams in San Francisco Bay, Elkhorn Slough and Bolinas Lagoon resembled populations in the Northeastern region. In California, genetic variation was not highest in San Francisco Bay despite greater magnitude of oyster plantings. Haplotypes varied over time in native and introduced populations. Main Conclusions Historical records and inferences from genetics agree that both Northeastern and Mid‐Atlantic regions were sources for Gemma in California. Only complex genetic hypotheses reconcile the strong segregation of haplotypes in California to the historical evidence of mixing in their proximate source (New York). These hypotheses include sorting of mixtures of haplotypes or selection in non‐native areas. Haplotype turnover in San Francisco and Massachusetts samples over time suggests that the sorting hypothesis is plausible. We suggest, however, that Gemma was introduced independently and recently to Tomales Bay and Bodega Harbor.  相似文献   

7.
Species loss and invasion of exotic species are two components of global biodiversity change that are expected to influence ecosystem functioning. Yet how they interact in natural settings remains unclear. Experiments have revealed two major mechanisms for the observed increase in primary productivity with plant species richness. Plant productivity may rise with species richness due to the increased amount of resources used by more diverse communities (niche complementarity) or through the increased probability of including a highly productive, dominant species in the community (sampling effect). Current evidence suggests that niche complementarity is the most relevant mechanism, whereas the sampling effect would only play a minor and transient role in natural systems. In turn, exotic species can invade by using untapped resources or because they possess a fitness advantage over resident species allowing them to dominate the community. We argue that the sampling effect can be a significant biodiversity mechanism in ecosystems invaded by dominant exotic species, and that the effect can be persistent even after decades of succession. We illustrate this idea by analyzing tree species richness–productivity relationships in a subtropical montane forest (NW Argentina) heavily invaded by Ligustrum lucidum, an evergreen tree from Asia. We found that the forest biomass increased along a natural gradient of tree species richness whether invaded by L. lucidum or not. Consistent with the sampling effect, L. lucidum invasion tripled total tree biomass irrespective of species richness, and monocultures of L. lucidum were more productive than any of the most species‐rich, uninvaded communities. Hence, the sampling effect may not be restricted to randomly assembled, synthetic communities. We emphasize that studying invaded ecosystems may provide novel insights on the mechanisms underlying the effect of biodiversity on ecosystem function.  相似文献   

8.
Comparing native and exotic plant species distribution and richness models can help to reveal the causes of invasive exotic species proliferation and provide recommendations for preserving native‐dominated ecosystems. However, models may have limited applicability if potentially divergent patterns across scales, spatial autocorrelation and correspondence with community‐wide patterns such as species richness are not considered. I modeled the distributions of 20 dominant native and 20 dominant exotic species among and within patches in a heavily‐invaded and threatened ecosystem in western North America, examining the roles of scale and species origin on variable selection, spatial autocorrelation and model accuracy to determine conditions that favour native over exotic dominants, and derive recommendations for effective management. I also compared distribution models with native and exotic species richness models, to determine the extent to which dominant native and exotic species were representative of synoptic community patterns. Predictability was lower for exotic dominants, possibly because they are environmental generalists, and was lower within than among patches. Predictors were generally shared between distribution and richness models; however, species‐specific differences were common within both native and exotic species groups. Predictors for individual species across scales were frequently different and sometimes opposing. Distribution and richness models suggest that management assuming environmental affiliation at one scale may be ineffective at another; that site prioritization to maximize native versus exotic richness may not preserve the habitat of some common native species; and that intensive management to reduce exotics may be difficult due to low predictability and shared affiliations with natives. Comparing native and exotic distribution and richness models at two scales enabled scale‐specific conservation recommendations and elucidated trade‐offs between management for richness and representation that distribution models at an individual scale would not have allowed.  相似文献   

9.
10.
In coastal lagoons with occasional connection to oceans, variations in physicochemical conditions and biological responses can be pronounced. To examine the influence of variable rainfall and tidal flushing, we measured, over a 4-year period, salinity, temperature and dissolved oxygen, and fish abundances, in Devereux Slough, a coastal lagoon occasionally connected to the Pacific Ocean along the California coast. We test the hypotheses that salinity is the primary influence on fish composition, and that fish density is affected by freshwater discharge and by berm breaches. During our sampled years, annual rainfall varied from 188 to 971 mm, and the sand berm separating the Slough from the ocean breached in each year except 2007, a drought period. Average yearly salinity ranged from 7.7 to 37.1 ppt. Hypoxic conditions in the near-bottom water were common each year. The best predictor of the fish composition was salinity, and an indirect correlation with fresh water discharge was responsible for much of the temporal variation in the fish assemblage. The interaction between salinity, state of the estuary mouth (open vs. closed), and precipitation significantly predicted densities of Fundulus parvipinnis (Girard 1984).  相似文献   

11.
Sponges assemblages were sampled in four coastal study regions (Malindi, Kenya; Quirimba Archipelago, northern Mozambique; Inhaca Island, Southern Mozambique and Anakao, Madagascar) in the west Indian Ocean. Sponge species were counted in multiple 0.5 m2 quadrats at depths of between 0 and 20 m at a number of sites within localities within each region. Despite the relatively small areas sampled, sponge samples comprised a total of 130 species and 70 genera of the classes Demospongiae and Calcarea. Sponges are clearly a major taxon in these regions in terms of numbers of species, percentage cover or biomass, although their ecology in the west Indian Ocean is virtually unknown. Nearly half of the genera, e.g. Iotrochota, found were species with a so‐called Tethyan distribution. Most of the other genera were cosmopolitan, e.g. Clathria, but some were cold water (Coelosphaera), Indo‐Australian (Ianthella) or circum‐African (Crambe). Many of the species encountered in the present study occurred in at least two study regions, many in more and could occupy large areas of substratum. Some of these, e.g. Xestospongia exigua, are commonly found throughout the Indo‐west Pacific region where they also occupy much space. The endemicity of the shallow water sponge faunas in East Africa (20–25%) seem to be high within the Indo‐Pacific realm but are lower than northern Papua New Guinea. The tropical regions (Kenya and Northern Mozambique) were more speciose than subtropical regions (southern Mozambique and Madagascar) but not significantly more diverse (Shannon H′). Although latitude was not a major influence on sponge community patterns, hard substratum assemblages did form a cline from the tropics to Southern Mozambique, linked by Madagascar. Substratum nature (habitat) was most important in influencing the suite and number of species present. Sponge assemblages of soft substrata were much more dissimilar, both within and between habitats, than those on hard substrata. There was a predictable variability in species richness between hard substratum habitats: coral reefs being speciose and caves being less so. Our findings showed that both patterns and influences on species richness may be decoupled from those influencing diversity. In our data species richness, but not diversity, showed striking regional and bathymetric trends. In addition, sponge species richness mainly split at coral reef vs. non‐reef habitats, whilst diversity divided principally into assemblages on hard and soft substrata. We consider this dichotomy of findings between species richness and diversity values to be important, as these are two principal measures used for the interpretation of biodiversity.  相似文献   

12.
The relationship between native and exotic richness has mostly been studied with respect to space (i.e., positive at larger scales, but negative or more variable at smaller scales) and its temporal patterns have rarely been investigated. Although some studies have monitored the temporal trends of both native and exotic richness, how these two groups of species might be related to each other and how their relative proportions vary through time in a local community remains unclear. Re-analysis of early post-fire successional data for a California chaparral community shows that, in the same communities and at small spatial scales, the native-exotic correlations varied through time. Both exotic richness and exotic fraction (i.e., the proportion of exotic species in the flora) quickly increased and then gradually declined, during the initial stages of succession following fire disturbance. This result sheds new light on habitat invasibility and has implications for timing the implementation of effective management actions to prevent and/or mitigate species invasions.  相似文献   

13.
Understanding the processes that lead to successful invasions is essential for the management of exotic species. We aimed to assess the comparative relevance of habitat (both at local and at regional scale) and plant features on the species richness of local canopy spiders of both indigenous and exotic species. In an oceanic island, Azores archipelago, we collected spiders in 97 transects belonging to four habitat types according to the degree of habitat disturbance, four types of plants with different colonisation origin (indigenous vs. exotic), and four types of plants according to the complexity of the vegetation structure. Generalised linear mixed models and linear regressions were performed separately for indigenous and exotic species at the local and regional landscape scales. At the local scale, habitat and plant origin explained the variation in the species richness of indigenous spiders, whereas exotic spider richness was poorly correlated to habitat and plant structure. The surrounding landscape matrix substantially affected indigenous spiders, but did not affect exotic spiders, with the exception of the negative effect exerted by native forests on the richness of exotic species. Our results revealed that the local effect of habitat type, plant origin and plant structure explain variations in the species richness observed at a regional scale. These results shed light on the mechanistic processes behind the role of habitat types in invasions, i.e., plant fidelity and plant structure are revealed as key factors, suggesting that native forests may act as physical barriers to the colonisation of exotic spiders.  相似文献   

14.
Mountain environments are currently among the ecosystems least invaded by non-native species; however, mountains are increasingly under threat of non-native plant invasion. The slow pace of exotic plant invasions in mountain ecosystems is likely due to a combination of low anthropogenic disturbances, low propagule supply, and extreme/steep environmental gradients. The importance of any one of these factors is debated and likely ecosystem dependent. We evaluated the importance of various correlates of plant invasions in the Wallowa Mountain Range of northeastern Oregon and explored whether non-native species distributions differed from native species along an elevation gradient. Vascular plant communities were sampled in summer 2012 along three mountain roads. Transects (n = 20) were evenly stratified by elevation (~70 m intervals) along each road. Vascular plant species abundances and environmental parameters were measured. We used indicator species analysis to identify habitat affinities for non-native species. Plots were ordinated in species space, joint plots and non-parametric multiplicative regression were used to relate species and community variation to environmental variables. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness occurring at mid–elevations. Species composition was strongly related to elevation and canopy openness. Overlays of trait and environmental factors onto non-metric multidimensional ordinations identified the montane-subalpine community transition and over-story canopy closure exceeding 60% as potential barriers to non-native species establishment. Unlike native species, non-native species showed little evidence for high-elevation or closed-canopy specialization. These data suggest that non-native plants currently found in the Wallowa Mountains are dependent on open canopies and disturbance for establishment in low and mid elevations. Current management objectives including restoration to more open canopies in dry Rocky Mountain forests, may increase immigration pressure of non-native plants from lower elevations into the montane and subalpine zones.  相似文献   

15.
Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany. Seed addition enhanced aboveground biomass and species richness compared with no‐seeds‐added controls, with exotics having disproportionate effects on productivity compared with natives. Disturbance enhanced the effects of seed addition on productivity and species richness, whereas rodents reduced productivity, but only in Germany and California. Our results demonstrate that experimental introduction of novel species can alter ecosystem function and community structure, but that local filters such as competition and herbivory influence the magnitude of these impacts.  相似文献   

16.
Aim Exotic species may serve as vectors for the introduction of parasites from their native range and may also become infected by parasites already present in invaded areas, but the total number of parasites infecting such exotic species in their invaded areas is typically less than that in their native range. We tested whether the diversity of parasites associated with exotic species in the native and invaded areas is related to the epizootic impact these parasites cause. Location Global. Methods We examined the diversity and epizootic impact of 384 parasite taxa associated with 22 exotic freshwater invertebrate species. The epizootic impact of each parasite was rated based on whether it had been documented to cause a major pathological impact on a large proportion of an infected host population (other than the invader under consideration). Results The total number of parasites associated with an exotic host in its native range was about twice that of all parasites associated with it in its entire invaded range. This was mainly because of the loss in the invaded areas of low impact parasites, whereas the average number of high impact parasites per host in these areas did not differ statistically from that in the native range. Main conclusions Our study suggests similar levels of adverse impact of parasites of exotic species in both their native and invaded areas. In addition to the introduction of highly pathogenic exotic parasites, other mechanisms that may be involved include (1) acquisition by the invaders of new high impact parasites in the invaded ranges, (2) high abundance of the invaders in their new ranges and (3) susceptibility of novel hosts to exotic parasites because of the ‘naive host syndrome’.  相似文献   

17.
Novel or emergent ecosystems arising from human action present both threats and opportunities for biodiversity. It has been suggested that exotic species can “facilitate” or “inhibit” native biodiversity through habitat modification. In Britain, there is a discussion over the contribution to biodiversity of plantations of exotic conifer species as these are commonly thought to have little relevancy as a habitat for native biodiversity. To address this we compared the species richness of a range of different taxonomic groups (lichens, bryophytes, fungi, vascular plants, invertebrates and songbirds) in exotic and native forest stands of differing structural stages in northern and southern Britain. In terms of overall native species-richness there was no significant difference between the exotic and the native stands. In the north, six species groups showed higher values in the exotic Sitka spruce (Picea sitchensis) stands with the remaining six showing higher values in the native Scots pine (Pinus sylvestris) stands. Most notably, lichen species richness was much lower in the exotic stands compared to the native stands, whereas bryophyte and fungal species richness was proportionately higher in the exotic stands. In the south, five species groups (all invertebrate taxa) showed higher species richness in exotic Norway spruce (Picea abies) stands compared to native oak (Quercus robur) stands. Five species groups had higher species-richness in the oak stands, in particular lichens and fungi. It is concluded that emergent ecosystems of exotic conifer species are not irrelevant to biodiversity. Where already well-established they can provide habitat for native species particularly if native woodland is scarce and biodiversity restoration is an immediate priority.  相似文献   

18.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

19.
Available data on species distributions and endemicity were compiled and examined for 11 groups of South African marine invertebrates (2533 species). For five groups species richness adhered to a well‐documented pattern, increasing from west to east, but for the other groups species richness was highest along the south coast. Endemicity was generally highest along the south coast, and lowest along the east coast. The data base was then analysed using several types of complementarity analyses, each producing a minimum set of potential reserve areas, which cumulatively represent all invertebrate species analysed. Approaches based solely on rarity, species richness and endemicity demonstrated individual biases, suggesting a need to combine all three interests. Combining the three techniques produced similar results to the individual analyses, showing conservation priorities to be highest along the east coast. Specifically, the areas of Port Elizabeth and Durban were ranked high in all analyses. Consistently, a total of 16 sites was necessary to represent all species analysed. Comparisons with similar analyses on fish and seaweeds revealed similar findings. Existing invertebrate records were shown to be biased towards centres of high sampling activity, demonstrating a need of future sampling attention in under‐represented areas.  相似文献   

20.
The distribution of macroinvertebrates and fishes in Tasmanian estuaries   总被引:4,自引:0,他引:4  
The distributions of 390 taxa of benthic macroinvertebrates collected in forty-eight estuaries and 101 fish species collected in seventy-five Tasmanian estuaries were related to geographical and environmental variables. Distribution patterns for the two taxonomic groups were largely congruent at both between and within-estuary scales. Faunal composition and the number of species collected at a site were primarily related to site salinity, the biomass of seagrass and tidal range. At the broader estuary scale, the distributions of macroinvertebrate and fish assemblages were primarily correlated with the presence of an entrance bar. Species richness varied with geographical location for both macrofauna and fishes, with highest numbers of species occurring in the Furneaux Group, north-eastern Tasmania and south-eastern Tasmania. These patterns primarily reflected differences in estuary type between regions rather than concentrations of locally endemic species. Although the majority of species collected during the study were marine vagrants, they constituted a very low proportion of total animal densities within estuaries. Only four species considered exotic to Tasmania were identifed. Nearly all species recorded from Tasmanian estuaries occurred widely within the state and have also been recorded in south-eastern Australia. Only 1% of estuarine fish species and < 5% of invertebrate species were considered endemic to the state. The generally wide ranges of species around Tasmania were complicated by (i) the absence of most species from the west coast (ii) a small (< 10%) component of species that occurred only in the north-east and Furneaux Group (eastern Bass Strait), and (iii) a few species (< 5%) restricted to other regions. The low number of species recorded from estuaries along the western Tasmanian coast reflected extremely low faunal biomass in that area. This depression in biomass on the west coast was attributed to unusually low concentrations of dissolved nutrients in rivers and dark tannin-stained waters which greatly restricted algal photosynthesis and primary production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号