首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Methods to assess tropical rain forest canopy structure: an overview   总被引:1,自引:0,他引:1  
Bongers  Frans 《Plant Ecology》2001,153(1-2):263-277
  相似文献   

3.
4.
  • 1 This study investigates the possible influence of terrestrial landscape structure on the spatial distribution of adult Chironomidae emerging from water bodies in three agricultural areas, each with hedgerow networks, in Brittany (France).
  • 2 Using spatially explicit data from 128 yellow pan traps set in pairs at the bottom of hedges throughout the three study areas, we show that landscape structure and heterogeneity must be considered at two different spatial scales.
  • 3 At a global scale, distance to water bodies was the main factor explaining the spatial distribution of adult chironomids: both species richness and abundance changed beyond a critical distance to the stream, resulting in different species assemblages of flying insects.
  • 4 At a local scale, the abundance of species and individuals at rest in hedges changed with the quality of the hedge (mainly determined by canopy width and cover of the different vegetation layers).
  • 5 The density of the hedgerow network, and landscape openness, both influenced the dispersal of chironomid species from water bodies.
  • 6 This study, which provides the first estimate of the dispersal capabilities of chironomids in particular landscapes, suggests that the terrestrial environment is an essential component of population dynamics and community structure in aquatic Chironomidae.
  相似文献   

5.
Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix.  相似文献   

6.
In a closed landfill, we investigated the diversity and ecological characters of carabid beetles to understand the ecological importance of closed landfills that have the potential as a multi-functional habitat for improving biodiversity in urbanized areas. In addition, we studied the influence of environmental factors (vegetation structure, soil) on distribution and diversity of carabid beetles. A total of 92,495 individuals representing 15 carabid species were collected from the closed landfill. Although the species richness of carabid beetles recorded in the closed landfill was not higher than the other green spaces in the city, the closed landfill could sufficiently provides a stable habitat as a semi-natural area for carabid beetles. Soil pH, Na, and tall grass plant cover influenced carabid assemblage in the closed landfill. However, other environmental variables (e.g., K+, Na+, Mg2+, bare land cover, weedy cover, and tree cover) were not correlated with carabid species composition. It is implied that in the closed landfill, which is a highly modified engineered environment, other abiotic environmental (e.g., drainage, soil texture, leachate, and landscape context, etc.) and biotic factors (e.g., intra- and interspecific competition) may have affected carabid assemblage. Although artificial drainages are essential facilities for landfill management, they are a critical factor that affects the species inhabiting the landfill. However, carabid beetles seemed to randomly fall into the artificial drainage. For successful management of closed landfills, it is very important that minimize the intervention and that develop the ecological sensitively management method.  相似文献   

7.
Insect parasitism patterns are influenced by vegetation structure and landscape complexity. Our objective was to examine the effects of vegetation structure and landscape complexity on parasitism based on direct measurements of structure and diversity indices as well as on metrics based on remote sensing using Quickbird images. We collected 2266 lepidopteran larvae and pupae, including different families and habits, to estimate parasitism, and recorded vegetation characteristics in five 100-m2 transects and 18 1 ha-plots in the dry Chaco, Northwest Argentina. We calculated landscape metrics and semivariograms in the plots from the image. The plots represented four “complexity groups”: agricultural, riparian/hedgerow, bare ground, and forest plots. Mean parasitism in the study sites was 10.7% (min: 0%, max: 23%). Parasitism was highest in agricultural plots, lowest in forest plots, and intermediate in riparian/hedgerow and bare ground plots. The landscape model explained parasitism more than the vegetation model. The landscape final model included Normalized Difference Vegetation Index (NDVI) Range, a measure of landscape heterogeneity, and Mean Shape Index, a measure of patch shape irregularity, and their interaction. The vegetation model included basal area and the Coefficient of Variation of tree density among transects, a measure of tree spatial distribution within a plot. Our results agree with previous studies that found higher parasitism in agricultural vs. non-agricultural environments in the subtropics, while riparian/hedgerow plots were important for conserving parasitism, as reported for temperate environments. We showed that under-explored tools such as the semivariogram and satellite band combinations were useful for the assessment of parasitism and that studying vegetation and landscape complexity simultaneously can help us examine mechanisms in detail. The identified variables related to high parasitism should be used for image classifications with a functional approach.  相似文献   

8.
9.
Accurately measuring biodiversity is essential for successful conservation planning. Due to biodiversity’s complexity, specific taxa are often chosen as indicators of patterns of diversity as a whole. Such taxa can include vegetation which can inform conservation decisions by demarcating land units for management strategies. For land units to be useful, they must be accurate spatial representations of the species assemblages present on the landscape. In this study, we determined whether land units classified by vegetative communities predicted the community structure of a diverse group of invertebrates—the ground beetles (Coleoptera: Carabidae). Specifically, that (1) land units of the same classification contained similar carabid species assemblages and that (2) differences in species structure were correlated with variation in land unit characteristics, including canopy and ground cover, vegetation structure, tree density, leaf litter depth, and soil moisture. The study site, the Braidwood Dunes and Savanna Nature Preserve in Will County, Illinois is a mosaic of differing land units. Carabid beetles were sampled continuously with pitfall trapping for 1 year (excluding winter) from September 2011 to November 2011 and from March 2012 to September 2012. Land unit characteristics were measured in July 2012. Nonmetric multidimensional scaling (NMDS) ordinated the land units by their carabid species assemblages into five ecologically meaningful clusters: disturbed, marsh, prairie, restoration, and savanna. The subset of land unit characteristics with the highest rank correlation with the NMDS ordination included soil moisture, leaf litter depth, percentage of canopy cover, and percentage of grass ground cover. Land units classified by vegetative communities effectively represented carabid species assemblages.  相似文献   

10.
Landscape heterogeneity is a major driver of biodiversity in agricultural areas and represents an important parameter in conservation strategies. However, most landscape ecology studies measure gamma diversity of a single habitat type, despite the assessment of multiple habitats at a landscape scale being more appropriate. This study aimed to determine the effects of landscape composition and spatial configuration on life-history trait distribution in carabid beetle and herbaceous plant communities. Here, we assessed the gamma diversity of carabid beetles and plants by sampling three dominant habitats (woody habitats, grasslands and crops) across 20 landscapes in western France. RLQ and Fourth Corner three-table analyses were used to assess the association of dispersal, phenology, reproduction and trophic level traits with landscape characteristics. Landscape composition and configuration were both significant in explaining functional composition. Carabid beetles and plants showed similar response regarding phenology, i.e. open landscapes were associated with earlier breeding species. Carabid beetle dispersal traits exhibited the strongest relationship with landscape structure; for instance, large and apterous species preferentially inhabited woody landscapes, whereas small and macropterous species preferentially inhabited open landscapes. Heavy seeded plant species dominated in intensified agricultural landscapes (high % crops), possibly due to the removal of weeds (which are usually lightweight seeded species). The results of this study emphasise the roles of landscape composition and configuration as ecological filters and the importance of preserving a range of landscape types to maintain functional biodiversity at regional scales.  相似文献   

11.
庐山森林景观空间分布格局及多尺度特征   总被引:6,自引:0,他引:6  
森林景观是区域整体景观的重要组成部分,研究其空间分布格局对于优化区域景观整体结构和发挥生态经济效益具有重要意义。基于庐山2010年植被斑块数据,将森林景观划分为常绿阔叶林、落叶阔叶林、松类、杉类和竹类等5类景观,从森林景观的不同发育阶段和林分类型角度出发,运用点格局分析法分析5类森林景观空间分布格局特征。最邻近距离分析表明:5类森林景观空间分布类型均服从集聚分布但聚集强弱有变化;不同发育阶段的森林景观空间分布类型以集聚分布为主,随机分布为辅,尤其幼龄林比较显著,中龄林和老龄林次之;5类森林景观的天然林均服从集聚分布,人工林大多趋于随机分布,只有松类和杉类呈显著集聚分布。Ripley's K函数揭示了不同发育阶段和林分类型的森林景观的多尺度集聚特征,即在小尺度范围内服从随机分布,随着空间距离的增大,以空间特征尺度为分界线,空间聚集强度先逐渐增强,随后不断减弱。总体来看,庐山森林景观的发育阶段主要处于幼年时期,原始植被遭到人类大肆破坏,幼龄林大片分布,属于典型的恢复性植被,未来要重点保护好天然林,减少人为干扰,实现森林景观适度集聚。研究庐山森林景观的空间分布和多尺度特征可以为生态环境保护和实现森林可持续经营提供理论指导。  相似文献   

12.
We studied carabid beetle assemblage structure and species diversity in an intermediate successional stage (seral) forest established in areas affected by the 1888 eruption of Mt. Bandai and a climax forest that had not been affected by the eruption at the Urabandai area, Fukushima Prefecture, Japan. In total, 2,131 carabid beetles representing 31 species were collected using pitfall traps without bait. A comparison of carabid beetle assemblages between the two forest types revealed that the number of species observed was comparable, but their abundance was greater in the seral forest. The assemblage structure clearly differed between the two forest types. In the seral forest, forest generalists, such as Synuchus arcuaticollis and Pterostichus prolongatus, along with forest specialists including Carabus vanvolxemi and Pterostichus asymmetricus, were collected. In the climax forest, forest generalists, such as Synuchus cycloderus and Carabus albrechti tsukubanus, were more abundant than forest specialists. This suggests that the current seral forest in the Urabandai area possesses environmental variables that enable the coexistence of both forest specialist and generalist beetle species. A redundancy analysis showed that six species from the genera Synuchus and Pterostichus were associated with high canopy openness and high understory vegetation cover, whereas species recorded only in the climax forest were associated with deep litter. Therefore, it seems likely that carabid beetles in the Urabandai area were affected by these three environmental variables.  相似文献   

13.
Although the strong relationship between vegetation and climatic factors is widely accepted, other landscape composition and configuration characteristics could be significantly related with vegetation diversity patterns at different scales. Variation partitioning was conducted in order to analyse to what degree forest landscape structure, compared to other spatial and environmental factors, explained forest tree species richness in 278 UTM 10 × 10 km cells in the Mediterranean region of Catalonia (NE Spain). Tree species richness variation was decomposed through linear regression into three groups of explanatory variables: forest landscape (composition and configuration), environmental (topography and climate) and spatial variables. Additionally, the forest landscape characteristics which significantly contributed to explain richness variation were identified through a multiple regression model. About 60% of tree species richness variation was explained by the whole set of variables, while their joint effects explained nearly 28%. Forest landscape variables were those with a greater pure explanatory power for tree species richness (about 15% of total variation), much larger than the pure effect of environmental or spatial variables (about 2% each). Forest canopy cover, forest area and land cover diversity were the most significant composition variables in the regression model. Landscape configuration metrics had a minor effect on forest tree species richness, with the exception of some shape complexity indices, as indicators of land use intensity and edge effects. Our results highlight the importance of considering the forest landscape structure in order to understand the distribution of vegetation diversity in strongly human-modified regions like the Mediterranean.  相似文献   

14.
Analysing invasive spread from a landscape ecological perspective forms an important challenge in plant invasion ecology. The present study examines the effects of landscape structure on the spatial and temporal dynamics of an expanding black cherry Prunus serotina population within a rural landscape in Flanders, Belgium, carrying a dense network of interconnected hedgerows. The study area, 251 ha in size, harboured a total of 2962 P. serotina individuals. The population was characterised by a negative exponential age distribution, a high growth rate and an early and continuous reproduction throughout the species' life cycle. The historical rate of spread of the species through the hedgerow network progressively increased with time, especially during the last decade. Spatial point pattern analysis revealed that the individuals had a significantly clustered distribution pattern and were spatially aggregated around seed sources, hedgerow intersections and roosting trees. Logistic regression analysis confirmed the effect of landscape structure on P. serotina occurrence, suggesting directional long distance dispersal by avian dispersal vectors, resulting in a differential seed pressure throughout the hedgerow network due to the preference of dispersing birds for roosting in structurally rich hedgerow with large trees near hedgerow intersections. Hence, the distribution of P. serotina in agricultural landscapes was strongly mediated by dispersal processes. Furthermore, decreasing spatial aggregation along the species life cycle, with especially seedlings and saplings being significantly aggregated while adult individuals were mostly distributed at random, and a relative outward shift of seedling recruitment curves with time indicate density dependent mortality, probably caused by intraspecific competition.  相似文献   

15.
The effects of land-use management and environmental features at different scales on carabid beetle diversity and trait structure were assessed across olive groves in northeastern Portugal. We selected organic and integrated olive groves that were distinct in terms of specific management practices, local linear features and landscape configurations. Besides the management intensification levels, differences in carabid diversity and community traits were mainly due to local habitat and ecological linear structures at a finer spatial scale. Carabid community traits related to disturbance, namely traits of body size and species dispersal ability, responded to land-use intensity and particular olive grove features were influencing diversity patterns. Within the olive grove patches, larger and brachypterous species were associated to plots with more dense vegetation cover while macropterous and small-sized species were more associated to open areas. Also, larger carabid species benefitted from higher patch size heterogeneity within the landscape mosaics. Our findings indicate that the effects of farming system is contingent on the specific management practices, local and linear features present in agroecosystems such as olive groves. Particularly, the influence of local features on carabid diversity patterns and community traits linked to dispersal and movement may be crucial in maintaining pest control at a landscape scale.  相似文献   

16.
Ants and dung beetles are focal indicators of change in several ecological processes and successional vegetation stages in Mediterranean landscapes. Despite relatively good knowledge of local species distributions, there are few data on their distributions at different scales. In the present study, the influence of multiscale landscape structure was examined using both ants and dung beetles to identify species that can serve as indicators and detectors of changes in vegetation structure. Multiscale analysis is necessary to explore the different roles of indicator and detector species for use as tools in studies focused on monitoring ecological changes. The study area was the Cabañeros National Park, in the center of the Iberian Peninsula. This site was selected because it is a good setting to evaluate the effects of typical vegetation mosaics on Mediterranean species at different scales. In this study, dung beetles and ants were trapped for one year. A multiscale analysis was designed using three different vegetation habitats (forest, scrubland and grassland) and landscape matrices (woodland, scrubland and grassland). Among dung beetles, 23 indicator species (IndVal values higher than 70%) were found at different scales of analysis. In addition, 20 dung beetle species were characterized as detector species (IndVal values between 45 and 70%) for the three different levels analyzed. Similar to the dung beetles, the ants had different species assemblages at various habitats and landscape levels; however, no indicator ant species were found in this study. All species with significant IndVal values (n = 8) were identified as detector species. Thus, ant and dung beetle assemblages were influenced in different ways by vegetation structure. Both groups showed strong individual species responses to different Mediterranean landscape conditions and vegetation types. Further, both insect groups showed a great number of detector species, which can be useful in ecosystem management because they have varying degrees of preference and sensitivity for different ecological states (such as successional vegetation stages). The diverse indicator and detector species identified in this work could be useful tools for the detection of landscape structure changes at both levels habitat patches and landscape matrix. However, a generalisation of the results at landscape scale should be taken with precaution, but they encourage to study more regions and similar landscapes. The use of more than one indicator group in the analysis confirms the importance of selecting groups with different sensitivities at varying spatial scales as well as different ecosystem functions. This strategy allows the establishment of a clear baseline with which to analyze future direct and indirect impacts of management in Mediterranean protected areas.  相似文献   

17.
1. Understanding the wide-scale processes controlling communities across multiple sites is a foremost challenge of modern ecology. Here, data from a nation-wide network of field sites are used to describe the metacommunity dynamics of arable carabid beetles. This is done by modelling how communities are structured at a local level, by changes in the environment of the sampled fields and, at a regional level, by fitting spatial parameters describing latitudinal and longitudinal gradients. 2. Local and regional processes demonstrated independent and significant capacities for structuring communities. Within the local environment, crop type was found to be the primary determinant of carabid community composition. The regional component included a strong response to a longitudinal gradient, with significant increases in diversity in an east-to-west direction. 3. Carabid metacommunities seem to be structured by a combination of species sorting dynamics, operating at two different, but equally important, spatial scales. At a local scale, species are sorted along a resource gradient determined by crop type. At a wider spatial scale species appear to be sorted along a longitudinal gradient. 4. Nation-wide trends in communities coincided with known gradients of increased homogeneity of habitat mosaics and agricultural intensification. However, more work is required to understand fully how communities are controlled by the interaction of crops with changes in landscape structure at different spatial scales. 5. We conclude that crop type is a powerful determinant of carabid biodiversity, but that it cannot be considered in isolation from other components of the landscape for optimal conservation policy.  相似文献   

18.
《Ecological Indicators》2007,7(3):598-609
It has been often shown that spatial distribution of species can be related to the main characteristics of their habitat. Usually, such relationships refer to point pattern analysis and try to determine whether the distribution of species is conditioned by their surroundings or not. They often seek correlations at a given place, date and scale and neglect the information potentially extracted from detailed surface pattern analyses that would require extended data. This study investigated the impact of landscape pattern and landscape context (of habitats) on carabid beetles assemblages in each place and on a continuous range of scales of a landscape. For this purpose, we develop a tool able to visualize and quantify the spatial variations of indices commonly used in point pattern analyses, such as contagion (heterogeneity) of a landscape and abundance (counts) of species. Using moving windows, we plotted contagion maps of two Brittany sites (France) and cross-correlation maps between the latter and carabid beetles spatial distributions, in order to study their local relationships. Associated landscape and insect index scaling profiles helped to interpret the correlations found. A rather good agreement with landscape ecology predictions over both sites has been found: significant relationships between land cover contagion and total carabid abundance on one hand, between agricultural intensification (mainly maize fields) and carabid body size on the other hand, have been observed. Nevertheless, detailed surface pattern analyses over a wide range of scales show quite high deviations from empirical results with no correlation, or even negative correlation, in some places between otherwise correlated indices.  相似文献   

19.
Land-use change is one of the main drivers of biodiversity loss worldwide, but its negative effects can vary depending on the spatial scale analyzed. Considering the continuous expansion of agricultural demand for land, it is urgent to identify the drivers that shape biological communities in order to balance agricultural production and biodiversity conservation in human-modified landscapes. We used a patch-landscape design and a multimodel inference approach to assess the effects of landscape composition and configuration at two spatial scales (patch and landscape) on the structure of dung beetle assemblages. We performed our study in the Caatinga, the largest dry forest in South America. We sampled 3,526 dung beetles belonging to 19 species and 11 genera. At patch scale, our findings highlight the positive relationship of forest cover and landscape heterogeneity with dung beetle diversity, which are the major drivers of beetle assemblages. Edge density, in turn, is a major driver at the landscape scale and has a negative effect on beetle diversity. Our results support the hypothesis that landscapes combining natural vegetation remnants and heterogeneous agricultural landscapes are the most effective at conserving the biodiversity of dung beetles in the Caatinga landscapes. Directing efforts to better understand the dynamics of dung beetles in agricultural lands can be helpful for policymakers and scientists to design agri-environment schemes and apply conservation strategies in tropical dry forests.  相似文献   

20.
Species richness and abundance of staphylinid and carabid beetles overwintering in winter wheat fields and 1- to 3-year-old wildflower areas were investigated during 2000/2001 on 16 study sites in Switzerland. Abundance and species richness of overwintering staphylinids significantly increased with successional age of the wildflower areas and were always higher in older wildflower areas than in winter wheat. A similar but less distinct pattern was observed for the abundance and species richness of carabid beetles. The influence of habitat parameters (vegetation cover, fine sand content, organic matter, pH, soil pore volume, surrounding landscape structure, habitat area) on the staphylinid and carabid assemblages based on the number of individuals per species and site was analysed using canonical correspondence analysis. Vegetation cover was the most significant parameter significantly characterizing both staphylinid and carabid assemblages. The amount of vegetation cover explained 15.7% of the variance, fine sand content accounted for 13.3% and surrounding landscape structure for 10.9% of the variance in the staphylinid assemblage. In the carabid assemblage, vegetation cover was the only significant factor, explaining 24.7% of the variance. This study showed for the first time that the significance of wildflower areas as a reservoir for hibernation for generalist predatory beetles increases with progressing successional age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号