首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
Evelyn Martin  Ewald Komor 《Planta》1980,148(4):367-373
Sucrose is taken up and accumulated by cotyledons of Ricinus communis L. Autoradiographic studies reveal a predominant accumulation of sucrose in the phloem of the cotyledons. The export of sucrose from the cotyledons to hypocotyl and roots proceeds in the phloem by mass flow. These results, taken together with previous data, are experimental evidence for proton-sucrose symport as the mechanism of phloem loading.  相似文献   

2.
The transport of assimilates from source to sink tissues is mediated by the phloem. Along the vascular system the phloem changes its physiological function from loading phloem to transport and unloading phloem. Sucrose carrier proteins have been identified in the transport phloem, but it is unclear whether the physiological role of these transporters is phloem unloading of sucrose or retrieval of apoplasmic sucrose back into the sieve element/companion cell complex. Here, we describe the dynamic expression of the Ricinus communis sucrose carrier RcSCR1 in the hypocotyl at different sink strengths. Our results indicate that phloem unloading in castor bean is not catalysed by the phloem loader RcSCR1. However, this sucrose carrier represents the molecular basis of the sucrose retrieval mechanism along the transport phloem, which is dynamically adjusted to the sink strength. As a consequence, we assume that other release carrier(s) exist in sink tissues, such as the hypocotyl, in R. communis.  相似文献   

3.
Epoxide hydrolase (EC 3.3.2.3) activity was measured with [1-14C]cis-9,10-epoxystearic acid as the substrate. Homogenates were prepared from the endosperm tissue of germinating seeds of castor bean (Ricinus communis L. zanzibariensis). The activity of fatty-acid epoxide hydrolase was characterized with respect to dependence on time, amount of protein, pH and temperature. Analyses of enzyme distribution in endosperm, cotyledons, root and hypocotyl showed the highest total activity in the endosperm, less in the cotyledons and low activity in the root and hypocotyl. The specific activity was similar for cotyledons and endosperm. Analysis of the temporal expression of the enzyme in the endosperm during germination revealed high activity already in the imbibed seed. Activity was maximal between days four to six and then decreased at the end of one week. Subcellular fractionation of endosperm revealed a dual distribution of activity between the glyoxysomal and the cytosolic fractions.  相似文献   

4.
Abstract Using seedlings of Ricinus communis L. sucrose export from the cotyledons to the hypocotyl and roots was measured at different levels of sucrose concentration in the cotyledons. Sucrose export followed Michaelis-Menten kinetics with a half-saturation of export at 35 mM sucrose in the cotyledons. A maximal export flux of 90 μmol h?l g?1 fresh weight of the cotyledons was obtained. Both these figures coincide with those obtained for sucrose uptake into the cotyledons. It is postulated that sucrose uptake and sucrose export occurs by the same mechanism and possibly by the same cells which then would have to be part of the phloem. Since sucrose uptake has been shown to proceed as proton-sucrose co-transport, phloem loading might also be energized by the protonmotive potential difference. The data, furthermore, are difficult to reconcile with the symplastic route of phloem loading.  相似文献   

5.
The sucrose concentration was measured at 70-min intervals in the phloem of individual bundles of the hypocotyl of Ricinus seedlings by 1H nuclear magnetic resonance (NMR) spectroscopic imaging. The sucrose concentration stayed fairly constant in all bundles for more than 7 h if the cotyledons were embedded in the endosperm or excised and incubated in 100 mM sucrose. If, however, the sucrose solution was replaced by sucrose-free buffer solution, the sucrose levels in the phloem decreased with a kinetic depending on the seedling: in some cases there was a smooth decline, in some a decline followed by a slight recovery and in some cases a clear-cut oscillation. The sucrose concentration was often not identical in the phloem of the individual bundles. The oscillations were larger in the phloem at the apex of the hypocotyl than in the phloem at the base of the hypocotyl. Cutting the petiole of one cotyledon led to a decrease in sucrose not only in the four bundles directly connected to the severed petiole but in all eight bundles of the hypocotyl. Cutting the petiole and dividing the vascular ring at the cotyledonary node and at the root crown did not prevent the decline of sucrose in all eight bundles. Therefore, a functional equilibration of translocated solutes between the eight bundles may occur within the 1-h measuring interval by radial diffusion through the parenchyma of the hypocotyl. Received 4 July 1997 / Accepted: 4 October 1997  相似文献   

6.
Careful cutting of the hypocotyl of Ricinus communis L. seedlings led to the exudation of pure sieve-tube sap for 2–3 h. This offered the possibility of testing the phloem-loading system qualitatively and quantitatively by incubating the cotyledons with different solutes of various concentrations to determine whether or not these solutes were loaded into the sieve tubes. The concentration which was achieved by loading and the time course could also be documented. This study concentrated on the loading of sucrose because it is the major naturally translocated sieve-tube compound. The sucrose concentration of sieve-tube sap was approx. 300 mM when the cotyledons were buried in the endosperm. When the cotyledons were excised from the endosperm and incubated in buffer, the sucrose concentration decreased gradually to 80–100 mM. This sucrose level was maintained for several hours by starch breakdown. Incubation of the excised cotyledons in sucrose caused the sucrose concentration in the sieve tubes to rise from 80 to 400 mM, depending on the sucrose concentration in the medium. Thus the sucrose concentration in the sieve tubes could be manipulated over a wide range. The transfer of labelled sucrose to the sieve-tube sap took 10 min; full isotope equilibration was finally reached after 2 h. An increase of K+ in the medium or in the sieve tubes did not change the sucrose concentration in the sievetube sap. Similarly the experimentally induced change of sucrose concentration in the sieve tubes did not affect the K+ concentration in the exudate. High concentrations of K+, however, strongly reduced the flow rate of exudation. Similar results were obtained with Na+ (data not shown). The minimum translocation speed in the sieve tubes in vivo was calculated from the growth increment of the seedling to be 1.03 m·h-1, a value, which on average was also obtained for the exudation system with the endosperm attached. This comparison of the in-vivo rate of phloem transport and the exudation rate from cut hypocotyls indicates that sink control of phloem transport in the seedlings of that particular age was small, if there was any at all, and that the results from the experimental exudation system were probably not falsified by removal of the sink tissues.Abbreviations PTS 3-hydroxy-5,8, 10-pyrenetrisulfonate  相似文献   

7.
During germination and early growth of the castor bean (Ricinus communis) nitrogenous constituents from the endosperm are transferred via the cotyledons to the growing embryo. Exudate collected from the cut hypocotyl of 4-day seedlings contained 120 millimolar soluble amino nitrogen and glutamine was the predominant amino acid present, comprising 35 to 40% of the total amino nitrogen. To determine the nature of nitrogen transfer, the endosperm and hypocotyl were removed and glutamine uptake by the excised cotyledons was investigated. Uptake was linear for at least 2 hours and the cotyledons actively accumulated glutamine against a concentration gradient. The uptake was sensitive to respiratory inhibitors and uncouplers and efflux of glutamine from the excised cotyledons was negligible. Transport was specific for the l-isomer. Other neutral amino acids were transported at similar rates to glutamine. Except for histidine, the acidic and basic amino acids were transported at lower rates than the neutral amino acids. For glutamine transport, the K(m) was 11 to 12 millimolar and the V(max) was 60 to 70 micromoles per gram fresh weight per hour. Glutamine uptake was diminished in the presence of other amino acids and the extent of inhibition was greatest for those amino acids which were themselves rapidly transported into the cotyledons. The transport of amino acids, on a per seedling basis, was greatest for cotyledons from 4-to 6-day seedlings, when transfer of nitrogen from the endosperm is also maximal. It is concluded that the castor bean cotyledons are highly active absorptive organs transporting both sucrose and amino acids from the surrounding endosperm at high rates.  相似文献   

8.
9.
Exudate was collected fromRicinus communis L. cotyledons after cutting the hypocotyl. It contained high levels of sucrose and potassium, a low level of calcium, and a pH of approx. 7.5. After application of [14C] sucrose to the cotyledons, radioactivity could be recovered from the exudate, indicating that the exudate was derived from the phloem. Using data from a number of individual seedlings, correlations between loading rates of sucrose, translocation rates, and sucrose and potassium contents were analyzed. A positive correlation was found between the rate of sucrose loading and the rate of sucrose exudation, whereas a negative correlation existed between the contents of sucrose and potassium in the phloem.  相似文献   

10.
During growth of Ricinus communis seedlings, magnesium ions are mobilized in the endosperm, taken up by and accumulated to very high levels (150 μmol·g FW?1) in the cotyledons, and translocated to hypocotyl and roots. The magnesium gain from days 6 to 7 in the cotyledons and the seedling axis necessitates a total up-take rate of 600 nmol·h?1-seedling?1 and the phloem translocation rate must amount to 200 nmol·h?1. seedling?1. The phloem loading of magnesium and the regulatory properties of this process were investigated, making specific use of the ability to collect pure phloem sap from the cut hypocotyl of 6-d-old Ricinus seedlings. The concentration of magnesium in sieve-tube sap (5 mM) was fairly constant under many incubation conditions, e.g. incubation in magnesium-free buffer, incubation with different cations (K+, Na+, NH 4 + ) or anions (Cl?, NO 4 - , SO 4 2- ), or incubation with sucrose and amino acids. Even addition of magnesium chloride to the cotyledons did not enhance phloem loading of magnesium ions. Therefore the high magnesium content of the cotyledons was sufficient for continuous phloem loading of magnesium, irrespective of external ionic conditions. Also, the flow rate of sieve-tube sap did not influence the magnesium concentration in the sap. Only the incubation with sulfate and phosphate ions increased the magnesium-ion concentration in the phloem. Magnesium sulfate offered to the cotyledons caused a threefold increase of magnesium ions in the sieve-tube sap, which was inhibited by Na+, NH 4 + and Ca2+ in rising order, but not by K+. Incubation with phosphate for a prolonged period (8 h) led to an increased mobilization of intra-cotyle-donary magnesium and an enhanced phloem loading of mobilized magnesium. It is concluded that phosphate availability is a decisive factor for mobilization and translocation of magnesium ions within the plant.  相似文献   

11.
The cotyledons of castor bean (Ricinus communis L.) act as absorption organs for amino acids, which are supplied to the medium. The analysis of the sieve-tube sap, which exudes from the cut hypocotyl, demonstrated the ability of the cotyledons to load particular amino acids into the phloem and to reject the loading of others. The sieve-tube sap of cotyledons, which were embedded in the endosperm, contained 150 mM amino acids, with 50 mM glutamine as the major amino acid, and 10–15 mM each of valine, isoleucine, lysine and arginine. Removal of the endosperm led to a drastic decline in the amino-acid content of sieve-tube sap down to 16 mM. Addition of single amino acid species to the medium increased the amino acid concentration in the sieve-tube sap in specific manner: glutamine caused the largest increase (up to 140 mM in exudate), glutamate and alanine smaller increases (up to 60 mM), and arginine the smallest. In addition, the amino acid composition of the sieve-tube sap changed, for instance, glutamine or alanine readily appeared in the sieve-tube sap upon incubation in glutamine or alanine, respectively, whereas glutamate was hardly discernible even in the case of incubation with glutamate; arginine was loaded into the sieve tubes only reluctantly. In general, glutamine and alanine accumulated four- to tenfold in the sieve tubes. The uptake of amino acids and of sucrose into the sieve tubes was interdependent: the loading of sucrose strongly reduced the amino acid concentration in the sieve-tube exudate and loading of amino acids decreased the sucrose concentration. Comparison of the concentrations of various amino acids on their way from the endosperm via the cotyledon-endosperm interface, through the cotyledons and into the sieve tubes showed that glutamine, valine, isoleucine and lysine are accumulated on this pathway, whereas glutamate and arginine are more concentrated in the cotyledons than in the sieve tubes. Obviously the phloem-loading system has a transport specificity different from that of the amino acid uptake system of the cotyledon in general and it strongly discriminates between amino acids within the cotyledons.  相似文献   

12.
Metabolites and enzyme activities were measured in the phloem sap exuding from a cut hypocotyl of germinating castor-bean (Ricinus communis L.) seedlings. The sap contained considerable quantities of adenine nucleotides, uridine nucleotides, uridine diphosphoglucose (UDPGlc), all the major phosphorylated metabolites required for glycolysis, fructose-2,6-bisphosphate and pyrophosphate. Supplying 200 mM glucose instead of sucrose to the cotyledons resulted in high concentrations of glucose in the sap, but did not modify the metabolite levels. In contrast, when 200 mM fructose was supplied we found only a low level of fructose but a raised sucrose concentration in the sap, which was accompanied by a three-to fourfold decrease of UDPGlc, and an increase of pyrophosphate, UDP and UTP. The measured levels of metabolites are used to estimate the molar mass action ratios and in-vivo free-energy change associated with the various reactions of sucrose breakdown and glycolysis in the phloem. It is concluded that the reactions catalysed by ATP-dependent phosphofructokinase and pyruvate kinase are removed from equilibrium in the phloem, whereas the reactions catalysed by sucrose synthase, UDPGlc-pyrophosphorylase, phosphoglucose mutase, phosphoglucose isomerase, aldolase, triose-phosphate isomerase, phosphoglycerate mutase and enolase are close to equilibrium within the conducting elements of the phloem. Since the exuded sap contained negligible or undetectable activities of the enzymes, it is concluded, that the responsible proteins are bound, or sequesterd behind plasmodesmata, possibly in the companion cells. It is argued that sucrose mobilisation via a reversible reaction catalysed by sucrose synthase is particularily well suited to allow the rate of sucrose breakdown in the phloem to respond to changes in the metabolic requirement for ATP, and for UDPGlc during callose production. It is also calculated that the transport of nucleotides in the phloem sap implies that there must be a very considerable uptake or de-novo biosynthesis of these cofactors in the phloem.  相似文献   

13.
14.
Changes in the dry weights of various parts of the castor bean seedling showed that the rates of transfer of material through the cotyledons to the embryonic axis exceeded 2 mg/hour after 5 to 6 days of germination. The sugar present in the endosperm was predominantly, and in the cotyledon almost exclusively, sucrose. Anatomical features were described which contribute to the efficiency of the cotyledons as organs of absorption and transmittal of sucrose to the embryonic axis, where hexoses are much more prevalent.The ability of the cotyledons to absorb sucrose survived removal of the endosperm from the seedling. A series of experiments is described in which the cotyledons of such excised seedlings were immersed in sucrose-(14)C and measurements made of uptake and of translocation to various parts of the seedling. Increasing rates of absorption were observed as the sucrose concentration was raised to 0.5 m and these rates were maintained for several hours. Removal of the embryonic axis (hypocotyl plus roots) drastically altered both the response to sucrose concentration and the time course of absorption by the cotyledons.More than 80% of the sugar normally entering the cotyledons from the endosperm is transmitted to the embryonic axis and this extensive turnover was seen also in pulse/chase experiments with excised seedlings. The cotyledons of excised seedlings absorbed sucrose against high apparent concentration gradients. The absorption was stimulated by phosphate and had a pH optimum at about pH 6.4. It was inhibited by arsenate, azide and 2,4-dinitrophenol.  相似文献   

15.
16.
External sucrose, supplied by the endosperm in vivo, is the physiological source of sucrose for Ricinus communis L. seedlings. It is taken up by the cotyledons and exported via the sieve tubes to the growing hypocotyl and root. Two parallel pathways of external sucrose to the sieve tubes, directly via the apoplasm and indirectly after transit through the mesophyll, have already been established (G. Orlich and E. Komor, 1992). In this study, we analysed whether a symplasmic flow of sucrose contributes to phloem loading. Uptake of external sucrose into the mesophyll and into the sieve tubes, and export of total sucrose were measured with intact and exuding seedlings in the presence of p-chloromercuribenzenesulfonic acid (PCMBS). Sucrose uptake into the mesophyll and into the sieve tubes was inhibited by 80–90%. Consequently, export of total sucrose slowed down. However, after the addition of PCMBS, sucrose was transiently exported in such a high amount that could not be accounted for by the residual uptake activity nor by the amount of sucrose confined to the sieve element-companion cell complex (seccc). From the results, we conclude that most of the sucrose exported transiently had moved to the sieve tubes from a symplasmic domain larger than the seccc, comprising at least all the cells of the bundle including the bundle sheath. We suggest that the symplasmic flow of sucrose observed is a mass flow driven by a turgor pressure. As a structural prerequisite for a symplasmic flow, plasmodesmata interconnect all the cells from the bundle sheath to the sieve tubes and also occur between the bundle sheath and the mesophyll. The phloem loading pathway of Ricinus cotyledons can thus be classified as a combination of three different routes. Received: 17 October 1997 / Accepted: 9 March 1998  相似文献   

17.
Pathway of sugar transport in germinating wheat seeds   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

18.
The impact of inorganic ions on sucrose fluxes in the cotyledons and on the pathway of phloem loading was studied in Ricinus communis L. seedlings. The cotyledons were incubated in defined solutions which contained either potassium, sodium, magnesium or calcium as chloride salts, or the sodium salts of sulphate or phosphate. Sucrose uptake from the medium into the cotyledons was only slightly affected by the salts. Sucrose efflux to the medium was increased by phosphate and sulphate and to a lesser extent by sodium and potassium. Phloem loading from the apoplasm and the symplasm was analysed by addition of labelled sucrose to the medium, determination of the specific radioactivity of sucrose in sieve-tube exudate and quantification of export into the seedling axis. Potassium and sodium stimulated the apoplasmic route of phloem loading of sucrose, mostly at the expense of loading from cotyledon sucrose pools. In contrast, sulphate and phosphate strongly inhibited the apoplasmic route whereas the (small) symplasmic flux from the cotyledon sucrose pools was less affected. Magnesium ions inhibited phloem loading by both pathways. The potential of ions in modulating the pathways of sucrose export in day to day operation of plants is discussed.  相似文献   

19.
During germination and early growth of the castor-bean (Ricinus communis L.), protein in the endosperm is hydrolyzed and the amino acids are transferred into the cotyledons and then via the translocation stream to the axis of the growing seedling. The cotyledons retain the ability to absorb amino acids after removal of the endosperm and hypocotyl, exhibiting rates of transport up to 70 mol g-1 h-1. The transport of L-glutamine was not altered by KCl or NaCl in low concentrations (0–20 mM). High concentrations of KCl (100 mM) inhibited transport, presumably by decreasing the membrane potential. An increase in the pH of the medium bathing the cotyledons was observed for 10 min following addition of L-glutamine but not with D-glutamine, which is not transported. The rate of proton uptake was dependent on the concentration of L-glutamine in the external solution. Inhibitors and uncouplers of respiration (azide, 2, 4-dinitrophenol, carbonyl cyanide phenylhydrazone and N-ethylmaleimide) inhibited both L-glutamine uptake and L-glutamine-induced proton uptake. Amino acids other than L-glutamine also caused a transient pH rise and the rate of proton uptake was proportional to the rate of amino-acid uptake. The stoichiometry was 0.3 protons per amino acid transported. Addition of sucrose also caused proton uptake but the alkalisation by sucrose and by amino acids were not additive. Nevertheless, when sucrose was added 60 min after providing L-glutamine at levels saturating its uptake system, a rise in pH was again observed. The results were consistent with amino-acid transport and sucrose transport in castor-bean cotyledons both occurring by a proton cotransport in the same membrane system but involving separate carriers.  相似文献   

20.
During the first 8 days of germination the Ricinus seedling is supplied with all nutrients by the endosperm via phloem transport. In 4- to 8-days-old seedlings the concentrations and contents of Fe, Cu, Mn and Zn, and nicotianamine (NA) in the endosperm, cotyledons, hypocotyl and roots were estimated. From the data obtained translocation rates and flow profiles for the metals were established. The main sink for Fe, Mn and Zn were the cotyledons whereas Cu was mainly imported into the hypocotyl. Maximum flow rates occurred between days 5 and 7, for Zn between days 6 and 8.The time kinetics of NA and divalent metal ion concentrations and contents are interpreted as co-transport. The role of NA as transport vehicle of micronutrients in the sieve tubes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号