首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
TIS11是转录后调控因子TTP在果蝇中的同源物,在果蝇幼虫免疫、发育和代谢等多种生理过程中都发挥重要作用.为研究TIS11的功能,需要利用GAL4/UAS系统获得整体高干扰效率的Tis11 RNAi果蝇幼虫.为平衡GAL4转基因果蝇高活性启动子的致死效应,需要使用带有成蝇卷翅标记CyO的第二染色体的平衡子,但CyO标记在幼虫中无可见表型,因此无法区分杂交幼虫的基因型.为解决这一问题,引入了带有CyO-GFP标记的平衡子.携带CyO-GFP平衡子的G-Actin果蝇与携带Tis11 RNAi序列的101765果蝇杂交,杂交幼虫可以通过GFP标记进行区分,剔除带有CyO-GFP平衡子的幼虫,从而挑选出表达Tis11 RNAi序列的幼虫,最后经real-time PCR检测所得幼虫具有整体高干扰效率.  相似文献   

2.
碱性磷酸酶广泛存在于人体各器官中,其水平异常与一系列疾病有关,但其在发育中的具体作用机制尚不明确。该文以果蝇为模式生物,研究一个新型碱性磷酸酶样蛋白基因CG6236在发育中的功能。利用P-因子介导的不精确剪切获得CG6236缺失突变体果蝇品系,发现CG6236纯合突变体半致死,存活的幼虫及成蝇腹部出现黑色素瘤样表型。在细胞中表达CG6236融合蛋白,发现其定位于细胞质中。另外,缺失或过表达CG6236均不影响Wingless和Hedgehog信号通路。综上,该研究首次获得CG6236基因缺失突变和转基因果蝇品系,并观察了缺失CG6236果蝇的表型,为进一步阐明基因CG6236的功能及作用机制奠定了基础。  相似文献   

3.
Hsp22对SCA3/MJD转基因果蝇的神经保护作用研究   总被引:1,自引:0,他引:1  
为了探讨Hsp22在SCA3/MJD发病机制中的作用.选用GMR-GAL4和elav-GAL4驱动子,利用经典的GAL4-UAS系统,将含有78个CAG重复扩增的ataxin-3蛋白片段(MJDtr-Q78)分别在果蝇眼睛和神经系统选择性表达,构建GMR-GAL4/UAS和elav-GAL4/UAS系统SCA3/MJD转基因果蝇模型, 然后利用遗传学方法和热休克反应使Hsp22在SCA3/ MJD转基因果蝇眼睛和神经系统以不同水平过表达.结果表明,Hsp22过表达显著抑制了MJDtr-Q78蛋白的神经毒性,果蝇眼睛视网膜光感受神经元变性明显缓解,果蝇存活能力也显著提高.Hsp22对SCA3/MJD具有保护作用,增强Hsp22表达对SCA3/MJD可能是一种潜在的治疗方法.  相似文献   

4.
帕金森病(PD)是以黑质致密部多巴胺神经元选择性减少和胞浆内路易小体的形成为特征的神经退行性疾病。研究发现,PTEN诱导激酶1(PINK1)基因突变导致家族性早发型帕金森病的发生。在转基因果蝇中,PINK1功能丢失导致间接飞行肌缺陷,线粒体结构、功能障碍,多巴胺神经元丢失。本研究在PINK1突变PD转基因果蝇中,进行发动蛋白相关蛋白1(Drp1)过表达和敲低,探索Drp1对PD转基因果蝇的保护作用及其可能机制。本研究选用MHC-Gal4/UAS系统的PD转基因果蝇模型,特异性启动PINK1B9基因于果蝇肌肉组织中表达;运用Drp1基因过表达和RNA干扰干预PINK1B9转基因果蝇,研究其对PD转基因果蝇的作用。结果显示,不论过表达Drp1还是Drp1敲低均可挽救PINK1突变转基因果蝇,降低翅膀异常率,改善飞行能力,恢复间接飞行肌排列,调节线粒体形态,提高ATP生成量,上调NDUFS3蛋白表达水平。本文结果提示,Drp1的调控挽救PINK1突变转基因果蝇与线粒体呼吸链有关。  相似文献   

5.
TTP在哺乳动物许多关键基因表达的转录后水平上起调控作用,Tis11是TTP蛋白在果蝇中的同源物.目前还没有现成的可用于研究Tis11功能的基因敲除或敲低的果蝇.为了获得肌动蛋白启动子或者热激蛋白启动子驱动表达Tis11 mRNA干扰序列的具有较高干扰效率的Tis11基因干扰果蝇,将肌动蛋白启动子或者热激启动子驱动表达的GAL4果蝇品系与融合有Tis11 mRNA干扰序列的UAS品系杂交,收集同时带有GAL4基因和UAS序列的子一代果蝇.提取所收集果蝇的总RNA,将其中的mRNA逆转录成cDNA,并设计检测Tis11基因的特异性引物,然后通过Real-time PCR检测Tis11 mRNA的表达情况.结果显示所收集的能表达Tis11基因干扰序列的子一代果蝇与不能表达Tis11基因干扰序列的对照果蝇相比,其体内Tis11 mRNA的表达水平下降明显.收集的果蝇其体内所表达的干扰序列对Tis11 mRNA干扰效果显著,我们成功获得了Tis11基因的RNA干扰果蝇.  相似文献   

6.
为探讨沉默信息调节因子2(Sir2)在SCA3/MJD发病机制中的作用.选用GMR-GAL4 和Nrv2-GAL4驱动子,利用经典的GAL4-UAS系统,将含有78 个CAG 重复扩增的ataxin-3 蛋白片段(MJDtr-Q78)分别在果蝇眼睛和运动神经元内选择性表达,构建GMR-GAL4/UAS 和Nrv2-GAL4/UAS 系统SCA3/MJD 转基因果蝇模型,然后分别在抑制和不抑制自噬的情况下,使Sir2在SCA3/MJD 转基因果蝇眼睛和运动神经元内过表达.结果发现,Sir2过表达明显抑制了SCA3/MJD 转基因果蝇眼睛视网膜光感受神经元变性,显著改善了果蝇运动能力,而在自噬被抑制后,Sir2的作用效果明显减弱,表明Sir2对SCA3/MJD 转基因果蝇具有神经保护作用,而这种神经保护作用需要依赖自噬的功能.  相似文献   

7.
问题113—116.果蝇的野生型个体具有红色的眼睛,淡黄色的身体。果蝇中1个单基因的隐性等位基因能够产生glass eve(玻璃眼)的表型,而另1个基因的隐性等位基因产生ebony body(乌黑身体)的表型。一个学生将纯饲养的野生型果蝇与纯饲养的具有玻璃眼和乌黑身体的果蝇进行杂交,产生的F_1代果蝇具有两种特征的所有野生型表型。在F_1代果蝇之间  相似文献   

8.
人Tau蛋白是一种主要的细胞骨架蛋白,由Tau蛋白组成的神经纤维缠结是阿尔茨海默病的两大病理特征之一,C末端缺失的Tau已经证实是神经纤维缠结的组份之一,体内体外实验已经证实,Tau蛋白可以是多种蛋白酶的水解底物。但是,Tau蛋白水解产生的截短片段在阿尔茨海默病中的作用目前还不清楚。为了能够在在体水平研究Tau蛋白截短片段的毒性机制,将Tau蛋白截短成不同的截短片段:Tau1-44、Tau45-441、Tau45-230、Tau231-441。利用显微注射的方法构建Tau基因截短片段的转基因果蝇,并利用果蝇中的UAS/GAL4系统驱动截短的Tau蛋白片段在果蝇的眼睛中异位表达,该实验结果发现在果蝇眼睛中过表达Tau蛋白截短片段并没有对果蝇眼睛的发育造成明显的毒性,从而推断Tau蛋白水解是机体的一种自我保护机制。  相似文献   

9.
利用GAL4-UAS系统在果蝇中过表达研究人类基因功能   总被引:1,自引:0,他引:1  
随着人类基因组测序的基本完成 ,大量新基因被发现 ,其中许多只有序列及基因组定位信息。新的焦点是这些新基因的功能研究。模式生物果蝇对此起重要作用。利用转基因果蝇和GAL4 UAS系统初步鉴定功能基因 ,建立了源于 10个不同人类基因的共 5 4个转基因果蝇品系 ,然后用 6种不同的GAL4诱导这些转基因在果蝇中过量表达。其中一个人类基因 ,延伸因子 1alpha 1(EF1α 1)的过表达导致果蝇的背板异常和糙眼表型。该研究表明可在果蝇中利用基因过表达策略初筛人类功能基因 ,这为大规模人类基因的功能研究提供了新的手段  相似文献   

10.
通过生物信息学方法和分子克隆技术克隆了一个果蝇新基因CG7609.该基因属于WD40家族,具有7个典型的WD40重复结构域.与人类WDR24基因的同源度很高.胚胎原位杂交和RT-PCR显示其在胚胎早期的中胚层有弱表达,在胚胎晚期主要在肠中表达.通过心脏特异抗体检测CG7609突变体的表型,发现其心脏前体细胞的分化不受影响.但通过果蝇心力衰竭模型分析该基因在成体心脏中的功能,发现CG7609基因缺失后心力衰竭发生率明显高于野生型,而且在与pannier基因配对后心力衰竭率发生较大的变化,这个初步发现推测该基因可能在戍体心脏中具有功能.  相似文献   

11.
艾炎军  曾庆韬 《昆虫学报》2010,53(12):1345-1351
黑腹果蝇Drosophila melanogaster黑条体果蝇(ebsr)与黑檀体果蝇(e)为同一个基因(ebony)的不同突变体, 两者具有相似的形态表型, 但行为特征表现出明显的差异。本研究以黑条体、 黑檀体和野生型果蝇为研究对象, 首先检测果蝇的视力和活跃度, 再采用不同交配组合进行求偶成功率、交配时间和求偶模式的分析。结果表明: 黑条体果蝇视力与活跃度与野生型果蝇比较无显著差异; 黑条体果蝇的交配成功率和交配潜伏期与野生型果蝇不存在显著的差异; 黑檀体果蝇的交配成功率和交配潜伏期与野生型果蝇存在极显著的差异(P<0.000)。黑条体果蝇表现出异于黑檀体果蝇的活跃度和交配活力, 可能是由于黑条体果蝇ebony基因的新突变导致了果蝇体内多巴胺水平异常, 从而形成了黑条体果蝇独特的求偶模式。  相似文献   

12.
近年来,果蝇心脏转化的遗传机制已初步研究清楚,但控制人类心脏早期发育的基因尚待鉴定。因为调控果蝇和脊椎动物早期心脏细胞命运定型的途径具有保守性,果蝇是一种探讨人类心脏早期发育的分子机理的理想动物模型。为此目的,我们采用P转座子和EMS诱变技术建立了约3000个隐性致死基因平衡系。通过心脏前体细胞特异性抗体免疫组化筛选,我们选出200余个表现心脏突变表型的平衡致死系。我们进一步利用RNAi技术对一些基因的功能进行了初步的研究,证明这些基因表现RNAi的突变表型,该类突变表型与基因突变时表现的表型相似,即心管呈缺陷型或无心脏前体细胞形成。利用果蝇和人类基因组计划获得的成果,我们从果蝇心脏侯选基因中初步克隆和鉴定了50个人类同源基因,其中20个是新基因。Northen印迹分析表明,一部分人类基因在心脏组织中有表达,从而为研究这些基因在人类心脏早期发育中的作用提供了信息。目前,我们正在建立转基因果蝇,以此为模型研究这些基因是否对心肌细胞发生或心肌功能起调控作用。产生心肌细胞突变类型的基因如果类似于人类心脏病综合症,则可以作为人类心脏疾病侯选基因作进一步的分析。  相似文献   

13.
【目的】Gal80~(ts)与Gal4组合驱动UAS转基因表达是黑腹果蝇Drosophila melanogaster研究中常用的转基因过表达遗传学工具,通过温度控制实现对UAS转基因表达的灵活开关。Gal80~(ts)是一种温度敏感型蛋白,低温下(18℃)与Gal4蛋白结合并抑制其转录活力,高温下(29℃)解除对Gal4的抑制,从而允许Gal4结合UAS位点,启动UAS转基因的表达。但是从18~29℃的开关只能强烈过表达UAS转基因,而不能灵活调控转基因的表达水平。本实验系统研究一系列温度下转基因的表达水平,从而实现该体系对转基因的表达水平的灵活控制。【方法】以果蝇翅芽这一常用器官组织为研究模型,以2种Gal4品系(dpp-Gal4和en-Gal4,分别由decapentaplgic和engrailed基因的启动子驱动)分别与tub-Gal80~(ts)(微管蛋白基因tubulin启动子驱动)基因重组后,再分别与UAS-wg(wingless)转基因品系杂交;在一系列温度(18,25,27.5,28,28.5和30℃)下进行子代幼虫培养,通过免疫组化染色揭示并量化分析转基因wg在3龄幼虫翅芽上的表达水平。【结果】18~25℃培养条件下,Gal80~(ts)与Gal4组合系统中的UAS转基因不能表达;30℃时培养,转基因强烈地过表达;在25~30℃区间内,随着温度升高,转基因表达水平逐渐上升。【结论】在25~30℃之间的温度调控可以实现对Gal80~(ts)与Gal4组合系统中的UAS转基因表达水平的调控。本研究结果对调控转基因表达程度有重要价值。  相似文献   

14.
"增强子陷阱"技术是建立果蝇脑全基因组表达图谱及其数据库的重要方法.筛选获得新特异表达的GAL4品系,可为进一步研究果蝇脑神经在学习记忆功能提供强有力的基因工具.通过"增强子陷阱"技术来获得果蝇突变体,并与报告转基因果蝇(UAS-EGFP)杂交,用荧光显微镜观察成年果蝇脑内荧光分布,从而获得该突变体的脑基因表达图谱,在此基础上利用JavaScript来建立果蝇脑全基因组表达数据库.目前获得基因突变体果蝇2 677种,大部分在果蝇脑中有表达,其中在果蝇嗅觉学习记忆相关脑区蘑菇体表达的基因有368个,且有部分基因特异地表达在某些传导通路上.这些果蝇基因突变体库及其表达图谱为进一步研究各基因的功能及作为遗传工具来研究各脑区结构和功能提供极大方便.  相似文献   

15.
利用果蝇模型研究人类心脏早期发育的分子机理(英文)   总被引:2,自引:0,他引:2  
近年来 ,果蝇心脏特化的遗传机制已初步研究清楚 ,但控制人类心脏早期发育的基因尚待鉴定。因为调控果蝇和脊椎动物早期心脏细胞命运定型的途径具有保守性 ,果蝇是一种探讨人类心脏早期发育的分子机理的理想动物模式。为此目的 ,我们采用P转座子和EMS诱变技术建立了约 3 0 0 0个隐性致死基因平衡系。通过心脏前体细胞特异性抗体免疫组化筛选 ,我们检出 2 0 0余个表现心脏突变表型的平衡致死系。我们进一步利用RNAi技术对一些基因的功能进行了初步的研究 ,证明这些基因表现RNAi的突变表型 ,该类突变表型与基因突变时表现的表型相似 ,即心管呈缺陷型或无心脏前体细胞形成。利用果蝇和人类基因组计划获得的成果 ,我们从果蝇心脏侯选基因中初步克隆和鉴定了 5 0个人类同源基因 ,其中 2 0个是新基因。Northen印迹分析表明 ,一部分人类基因在心脏组织中有表达 ,从而为研究这些基因在人类心脏早期发育中的作用提供了信息。目前 ,我们正在建立转基因果蝇 ,以此为模型研究这些基因是否对心肌细胞发生或心肌功能起调控作用。产生心肌细胞突变类型的基因如果类似于人类心脏病综合症 ,则可以作为人类心脏疾病侯选基因作进一步的分析。  相似文献   

16.
Jin LH  Qi Z 《遗传》2011,33(11):1239-1244
Spen家族蛋白参与多种生物学过程,包括神经元细胞的命运、神经元突起延伸的调节、细胞周期调控等,并且是联系Notch信号途径和生长因子受体途径的关键分子。最近的研究表明spen基因在果蝇的眼睛、翅膀和腿组织中参与Wnt信号转导。但该基因在果蝇中的功能还有很多不明确之处。文章采用基因克隆、原核表达及亲和层析等方法制备并纯化了黑腹果蝇spen的C端6×His-spen融合蛋白,以纯化的融合蛋白免疫大鼠获得了抗spen的多克隆抗体。利用制备的抗体进行免疫染色结果显示spen蛋白定位于细胞核内,并且在大脑、脂肪体、血细胞、肠和唾液腺等组织中表达量较高。分析野生型和突变体果蝇血细胞的噬菌作用,发现spen蛋白低表达的突变体吞噬外来异物明显低于野生型,结果表明spen蛋白能够调节血细胞的吞噬功能。  相似文献   

17.
【目的】脂类转移家族蛋白基因编码一类参与脂类转运及代谢的蛋白。本研究旨在构建华癸中慢生根瘤菌3个脂质转运家族蛋白基因的突变株,检测及分析突变体与紫云英共生条件下的表型及功能。【方法】利用生物信息学分析与预测转脂蛋白的结构特征及功能,采用荧光定量技术检测目标基因在自生和共生条件下的表达特性,通过插入突变技术构建目标基因突变株,并进行植物盆栽实验考察其共生表型。【结果】MCHK-5577、MCHK-2172和MCHK-2779基因编码蛋白属于START/RHO alpha_C/PITP/Bet_v1/Cox G/Cal C(SRPBCC)超家族,包含脂类转移结构域,参与脂类转运或代谢,与百脉根等中慢生根瘤菌相应基因的序列相似性达95%以上。这3个基因在共生条件下的表达水平都增高。分别构建了MCHK-5577、MCHK-2172和MCHK-2779基因突变菌株,与野生型菌株7653R相比,接种突变株MCHK-2172mut、MCHK-2779mut和MCHK-5577mut后的植株地上部分生物量和根瘤固氮酶活性显著降低。【结论】华癸中慢生根瘤菌脂质转移家族蛋白基因在共生互作过程中发挥重要作用,突变后明显影响共生固氮表型。本文的实验结果为深入研究脂类转移蛋白在共生固氮作用中的功能机制奠定了基础。  相似文献   

18.
【目的】灵活操控靶基因的表达水平对于研究基因的功能十分重要。Gal4/UAS系统已被广泛应用于调控基因表达,可研究果蝇Drosophila等模式生物复杂的生物学问题。受采用载体的特性及插入位点的影响,Gal4或UAS转基因品系在构建好之后,其调控靶基因的能力基本是确定的。本研究旨在在现有Gal4/UAS系统的基础上,开发一种新的策略,实现在果蝇翅芽中灵活操控wingless(wg)基因的表达水平。【方法】用遗传学手段将黑腹果蝇Drosophila melanogaster品系的UAS-wg和UAS-wg-RNAi转基因重组到同一黑腹果蝇品系中。将该重组黑腹果蝇品系与dpp-Gal4黑腹果蝇品系杂交,同时驱动UAS-wg和UAS-wg-RNAi在果蝇幼虫翅芽中共表达。杂交子代幼虫分别放置在不同的温度(18, 25和30℃)下培养。将幼虫翅芽解剖并进行免疫组化染色,测量染色的荧光强度,分析翅芽中wg的表达水平。【结果】在低温(18℃)下,UAS-wg在基因表达调控中起主要作用,wg表现为超表达,但其超表达的效率可被UAS-wg-RNAi有效地削弱。相反,在高温(30℃)下,UAS-wg-RNAi起主导作用,wg的表达受到抑制。并且通过转换温度,可实现wg在翅芽发育的不同阶段在超表达和抑制之间相互转化,从而灵活地操控wg基因在翅芽中的表达水平。【结论】该方法可以灵活操控果蝇翅芽中wg基因的表达水平,对于调控转基因的表达有重要的意义。  相似文献   

19.
20.
Osiris基因在几丁质沉积过程中表达,可能参与昆虫表皮的发育。本研究利用CRISPR/Cas9 基因编辑系统对Osiris24基因进行编辑,进而观察Osiris24突变体果蝇的性状并且检测Osiris24的表达特征。在Osiris24第1外显子设计2个sgRNA靶位点,插入到pCFD4敲除载体骨架中,同时构建酵母Gal4蛋白序列的供体(donor)载体,将2个载体同时注射到nos-Cas9胚胎中获得G0代转基因果蝇。结果显示,G0代基因编辑阳性率为92.8%,Osiris24纯合突变体在胚胎或1龄幼虫期致死,杂合突变体未观察到可见表型。将阳性G0代雄虫与UAS-GFP雌虫杂交,检测不同龄期和不同组织GFP信号表达情况。结果发现,Osiris24在不同龄期幼虫中均有表达,幼虫期主要在体壁、气管、前肠和后肠高表达,蛹期主要在体壁和翅上表达,推测其在果蝇发育中发挥重要作用,本研究为深入探究Osiris基因功能提供了研究模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号