首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, psychrophilic yeasts, which grow on lactose as a sole carbon source at low temperature and under acidic conditions, were isolated from soil from Hokkaido, Japan. The phenotypes and sequences of 28S rDNA of the isolated strains indicated a taxonomic affiliation to Guehomyces pullulans. The isolated strains were able to grow on lactose at below 5 degrees C, and showed cold-active acid beta-galactosidase activity even at 0 degrees C and pH 4.0 in the extracellular fractions. Moreover, K(m) of beta-galactosidase activity for lactose in the extracellular fraction from strain R1 was found to be 50.5 mM at 10 degrees C, and the activity could hydrolyze lactose in milk at 10 degrees C. The findings in this study indicate the possibility that the isolated strains produce novel acid beta-galactosidases that are able to hydrolyze lactose at low temperature.  相似文献   

2.
Extracellular lactase (beta-d-galactosidase, EC 3.2.1.23) was prepared as an ethanol precipitate from a culture of Fusarium moniliforme grown on whey. The enzyme functioned optimally at pH 3.8 to 5.0 and at 50 to 60 degrees C on both o-nitrophenyl-beta-d-galactopyranoside (ONPG) and lactose. The activation energy of the enzymic hydrolysis of ONPG and lactose in the range of 20 to 55 degrees C was 8,500 and 7,200 cal (ca. 3.57 x 10 and 3.02 x 10 J)/mol, respectively. The K(m) values were 4.4 and 12.4 mM for ONPG and lactose, respectively. At optimum pH, the enzyme lost half of its activity when it was heated at 50 degrees C for 6 h; at the same pH, the loss was only 5% when the enzyme was heated at 37 degrees C for 6 h. At optimum conditions, 50% of the lactose in whey was hydrolyzed by 10 U of this enzyme in 50 h.  相似文献   

3.
Highly purfied beta-galactosidase from fungus Curvularia inaequalis cultural fluid with a specific activity of 50 units per mg of protein was obtained by 2-fold purification of the enzyme, using chromatography on DEAE-cellulose and on hydroxylapatite. The enzyme was found to hydrolyze o-nitrophenyl-beta-D-galactopyranoside (pH optimum of 3.7--4.5) and lactose (pH optimum 3.9--5.3). The isoelectric point was observed at pH 4.4 the temperature optimum was 60 degrees C. The molecular weight (115 000--126 000) and the amino acid composition of the enzyme were determined. Km values for o-nitrophenyl-beta-D-galactopyranoside and lactose were 0.55-10(-3) M and 4.5-10(-3) M respectively. Disc-electrophoresis in polyacrylamide gel revealed a single band with a specific activity. The homogeneity of the enzyme was found in ultracentrifuge.  相似文献   

4.
The enzyme beta-galactosidase was purified from a cold-adapted organism isolated from Antarctica. The organism was identified as a psychotrophic Pseudoalteromonas sp. The enzyme was purified with high yields by a rapid purification scheme involving extraction in an aqueous two-phase system followed by hydrophobic interaction chromatography and ultrafiltration. The beta-galactosidase was optimally active at pH 9 and at 26 degrees C when assayed with o-nitrophenyl-beta-D-galactopyranoside as substrate for 2 min. The enzyme activity was highly sensitive to temperature above 30 degrees C and was undetectable at 40 degrees C. The cations Na+, K+, Mg2+ and Mn2+ activated the enzyme while Ca2+, Hg2+, Cu2+ and Zn2+ inhibited activity. The shelf life of the pure enzyme at 4 degrees C was significantly enhanced in the presence of 0.1% (w/v) polyethyleneimine. The pure beta-galactosidase was also evaluated for lactose hydrolysis. More than 50% lactose hydrolysis was achieved in 8 h in buffer at an enzyme concentration of 1 U/ml, and was increased to 70% in the presence of 0.1% (w/v) polyethyleneimine. The extent of lactose hydrolysis was 40-50% in milk. The enzyme could be immobilized to Sepharose via different chemistries with 60-70% retention of activity. The immobilized enzyme was more stable and its ability to hydrolyze lactose was similar to that of the soluble enzyme.  相似文献   

5.
A mannanase was purified from a cell-free extract of the recombinant Escherichia coli carrying a Bacillus subtilis WL-3 mannanase gene. The molecular mass of the purified mannanase was 38 kDa as estimated by SDS-PAGE. Optimal conditions for the purified enzyme occurred at pH 6.0 and 60 degrees C. The specific activity of the purified mannanase was 5,900 U/mg on locust bean gum (LBG) galactomannan at pH 6.0 and 50 degrees C. The activity of the enzyme was slightly inhibited by Mg(2+), Ca(2+), EDTA and SDS, and noticeably enhanced by Fe(2+). When the enzyme was incubated at 4 degrees C for one day in the presence of 3 mM Fe(2+), no residual activity of the mannanase was observed. The enzyme showed higher activity on LBG and konjac glucomannan than on guar gum galactomannan. Furthermore, it could hydrolyze xylans such as arabinoxylan, birchwood xylan and oat spelt xylan, while it did not exhibit any activities towards carboxymethylcellulose and para-nitrophenyl-beta-mannopyranoside. The predominant products resulting from the mannanase hydrolysis were mannose, mannobiose and mannotriose for LBG or mannooligosaccharides including mannotriose, mannotetraose, mannopentaose and mannohexaose. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose.  相似文献   

6.
Cho YJ  Shin HJ  Bucke C 《Biotechnology letters》2003,25(24):2107-2111
A beta-galactosidase, catalyzing lactose hydrolysis and galactooligosaccharide (GalOS) synthesis from lactose, was extracted from the yeast, Bullera singularis KCTC 7534. The crude enzyme had a high transgalactosylation activity resulting in the oligosaccharide conversion of over 34% using pure lactose and cheese whey permeate as substrates. The enzyme was purified by two chromatographic steps giving 96-fold purification with a yield of 16%. The molecular weight of the purified enzyme (specific activity of 56 U mg(-1)) was approx. 53 000 Da. The hydrolytic activity was the highest at pH 5 and 50 degrees C, and was stable to 45 degrees C for 2 h. Enzyme activity was inhibited by 10 mM Ag3+ and 10 mM SDS. The Km for lactose hydrolysis was 0.58 M and the maximum reaction velocity (V(max)) was 4 mM min(-1). GalOS, including tri- and tetra-saccharides were produced with a conversion yield of 50%, corresponding to 90 g GalOS l(-1) from 180 g lactose l(-1) by the purified enzyme.  相似文献   

7.
A beta-galactosidase isoenzyme, beta-Gall, from Bifidobacterium infantis HL96, was expressed in Escherichia coli and purified to homogeneity. The molecular mass of the beta-Gall subunit was estimated to be 115 kDa by SDS-PAGE. The enzyme appeared to be a tetramer, with a molecular weight of about 470 kDa by native PAGE. The optimum temperature and pH for o-nitrophenyl-beta-D-galactopyranoside (ONPG) and lactose were 60 degrees C, pH 7.5, and 50 degrees C, pH 7.5, respectively. The enzyme was stable over a pH range of 5.0-8.5, and remained active for more than 80 min at pH 7.0, 50 degrees C. The enzyme activity was significantly increased by reducing agents. Maximum activity required the presence of both Na+ and K+, at a concentration of 10 mM. The enzyme was strongly inhibited by p-chloromercuribenzoic acid, divalent metal cations, and Cr3+, and to a lesser extent by EDTA and urea. The hydrolytic activity using lactose as a substrate was significantly inhibited by galactose. The Km, and Vmax values for ONPG and lactose were 2.6 mM, 262 U/mg, and 73.8 mM, 1.28 U/mg, respectively. beta-Gall possesses strong transgalactosylation activity. The production rate of galactooligosaccharides from 20% lactose at 30 and 60 degrees C was 120 mg/ml, and this rate increased to 190 mg/ml when 30% lactose was used.  相似文献   

8.
AIMS: Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima for the hydrolysis of lactose and the production of galacto-oligosaccharides. METHODS AND RESULTS: A putative beta-galactosidase gene of Thermotoga maritima was expressed in Escherichia coli as a carboxyl terminal His-tagged recombinant enzyme. The gene encoded a 1100-amino acid protein with a calculated molecular weight of 129,501. The expressed enzyme was purified by heat treatment, His-tag affinity chromatography, and gel filtration. The optimum temperatures for beta-galactosidase activity were 85 and 80 degrees C with oNPG and lactose, respectively. The optimum pH value was 6.5 for both oNPG and lactose. In thermostability experiments, the enzyme followed first-order kinetics of thermal inactivation and its half-life times at 80 and 90 degrees C were 16 h and 16 min, respectively. Mn2+ was the most effective divalent cation for beta-galactosidase activity on both oNPG and lactose. The Km and Vmax values of the thermostable enzyme for oNPG at 80 degrees C were 0.33 mm and 79.6 micromol oNP min(-1) mg(-1). For lactose, the Km and Vmax values were dependent on substrate concentrations; 1.6 and 63.3 at lower concentrations up to 10 mm of lactose and 27.8 mm and 139 micromol glucose min(-1) mg(-1) at higher concentrations, respectively. The enzyme displayed non-Michaelis-Menten reaction kinetics with substrate activation, which was explained by simultaneous reactions of hydrolysis and transgalactosylation. CONCLUSIONS: The results suggest that the thermostable enzyme may be suitable for both the hydrolysis of lactose and the production of galacto-oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge of hydrolysis and transgalactosylation performed by beta-galactosidase of hyperthermophilic bacteria.  相似文献   

9.
The apparent instability of beta-galactosidase in toluene-treated cells or cell-free extracts of lactic streptococci is explained by the fact that these organisms do not contain the expected enzyme. Instead, various strains of Streptococcus lactis, S. cremoris, and S. diacetilactis were shown to hydrolyze o-nitrophenyl-beta-d-galactoside-6-phosphate (ONPG-6-P), indicating the presence of a different enzyme. In addition, lactose metabolism in S. lactis C(2)F was found to involve enzyme I (EI), enzyme II (EII), factor III (FIII), and a heat-stable protein (HPr) of a phosphoenolpyruvate (PEP)-dependent phosphotransferase system analogous to that of Staphylococcus aureus. Mutants of S. lactis C(2)F, defective in lactose metabolism, possessed the phenotype lac(-) gal(-). These strains were unable to accumulate (14)C-thiomethyl-beta-d-galactoside, to hydrolyze ONPG, or to utilize lactose when grown in lactose or galactose broth. In addition, these mutants contained EI and HPr, but lacked EII, FIII, and the ability to hydrolyze ONPG-6-P. This suggested that the defect was in the phosphorylation step. Lactose-negative mutants of S. lactis 7962, a strain containing beta-galactosidase, could be separated into several classes, which indicated that this organism is not dependent upon the PEP-phosphotransferase system for lactose metabolism.  相似文献   

10.
The production of galacto-oligosaccharides (GOS) from lactose by Aspergillus oryzae beta-galactosidase immobilized on cotton cloth was studied. A novel method of enzyme immobilization involving PEI-enzyme aggregate formation and growth of aggregates on individual fibrils of cotton cloth leading to multilayer immobilization of the enzyme was developed. A large amount of enzyme was immobilized (250 mg/g support) with about 90-95% efficiency. A maximum GOS production of 25-26% (w/w) was achieved at near 50% lactose conversion from 400 g/L of lactose at pH 4.5 and 40 degrees C. Tri- and tetrasaccharides were the major types of GOS formed, accounting for about 70% and 25% of the total GOS produced in the reactions, respectively. Temperature and pH affected not only the reaction rate but also GOS yield to some extend. A reaction pH of 6.0 increased GOS yield by as much as 10% compared with that of pH 4.5 while decreased the reaction rate of immobilized enzyme. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme under the same reaction conditions, suggesting diffusion limitation was negligible in the packed bed reactor and the enzyme carrier. Increase in the thermal stability of PEI-immobilized enzyme was also observed. The half-life for the immobilized enzyme on cotton cloth was close to 1 year at 40 degrees C and 21 days at 50 degrees C. Stable, continuous operation in a plug-flow reactor was demonstrated for about 3 days without any apparent problem. A maximum GOS production of 26% (w/w) of total sugars was attained at 50% lactose conversion with a feed containing 400 g/L of lactose at pH 4.5 and 40 degrees C. The corresponding reactor productivity was 6 kg/L/h, which is several-hundred-fold higher than those previously reported.  相似文献   

11.
Beta-Galactosidase (beta-D-galactoside galactohydrolase 3.2.1.23) from Curvularia inaequalis was immobilized by glutaric dialdehyde on gamma-aminopropyl triethoxysilane treated porous siliceous carrier silochrome. From the crude preparation with a specific activity of 3.1 U/mg immobilized beta-galactosidase with an activity of 113 U/g was obtained. The immobilized enzyme did not show significant changes in its enzymic properties. The column filled with the resultant preparation and used to hydrolyze lactose in milk whey maintained 50% of its initial activity after a 30-day work at 50 degrees C.  相似文献   

12.
In the course of exploring new microbial sources of extracellular beta-d-galactosidase (EC. 3.2.1.23), Alternaria alternata was found to excrete elevated quantities of a thermostable form of the enzyme when cultivated in whey growth medium. Optimum cultural conditions for maximum enzyme production were a whey lactose concentration of 6%, supplementation of the medium with 0.050 M (NH(4))(2)SO(4), an inoculum size of 10 conidia per ml, and a cultivation time at 28 to 30 degrees C of 5 days. The fungus utilized whey lactose for the production of the enzyme most efficiently, and the observed maximum yield, 280 nanokatals of hydrolyzed o-nitrophenyl-beta-d-galactopyranoside per g of whey lactose, was comparable to maximum yields reported for certain commercial fungi. The optimum pH and temperature of the enzymatic reaction were 4.5 to 5.5 and 60 to 70 degrees C, respectively, and the enzyme lost half of its activity when heated at 65 degrees C for 84 min. These properties make the enzyme particularly suitable for processing acid and less-acid (pH 5 to 6) dairy products and by-products.  相似文献   

13.
beta-D-Galactosidase activity has been detected previously in the cotyledons of germinated nasturtium (Tropaeolum majus L.) seeds and has been linked to the hydrolysis in vivo of storage xyloglucan (amyloid) (Edwards, M., Dea, I. C. M., Bulpin, P. V., and Reid, J. S. G. (1985) Planta (Berl.) 163, 133-140). The major beta-D-galactosidase present in extracts from the cotyledons of 9-day seedlings has now been purified to apparent homogeneity. The enzyme (Mr 97,000, no subunits) comprised a range of closely related molecular species ranging in isoelectric point from pH 6.6 to 7.1. Further purification to give a single protein band on isoelectric focusing (pI = 7.1) was achieved by chromatofocusing. The pH optimum of the enzyme (mixed molecular species) was 4.0-5.0 (stable from pH 3-10), and the temperature optimum was 50 degrees C (stable to 50 degrees C). It hydrolyzed lactose and beta-D-galactopyranosides but not melibiose and alpha-D-galactopyranosides. It did not release the terminal nonreducing alpha-D-galactopyranosyl residues from seed galactomannans, but catalyzed the rapid removal of terminal nonreducing beta-D-galactopyranosyl residues from xyloglucans. On the basis of the ability of the enzyme to hydrolyze xyloglucans, the kinetics of xyloglucan hydrolysis, and an experimental demonstration of a clear correlation between xyloglucan depletion and the activity in vitro of this enzyme, it is argued that the cell-wall storage xyloglucan of the nasturtium seed is its natural substrate.  相似文献   

14.
beta-galactosidase from Aspergillus oryzae immobilized in an axial-annular flow reactor was used to effect the hydrolysis of the lactose component of skim milk. Nonlinear regression methods were employed to determine the kinetic parameters of four rate expressions derived from a proposed enzymatic mechanism. Data taken at three different temperatures (30 degrees C, 40 degrees C, and 50 degrees C) were fit via nonlinear regression methods assuming an Arrhenius temperature model for each of the parameters. For the reaction conditions used in this research, a three-parameter rate expression which includes the separate competitive inhibition effects of alpha- and beta-galactose (and the associated mutarotation reaction) is sufficient to model the hydrolysis of lactose in skim milk. The effects of temperature on the individual kinetic parameters are small. The most significant effect appears in the term for inhibition by the beta anomer of galactose (E(A) = 10.3 kcal/mol). At 40 degrees C and a space time of 10 min, 70% of the lactose present in skim milk can be hydrolyzed with the axial-annular flow reactor. This reactor can be used to hydrolyze the lactose in skim milk without the problems observed with other reactor configurations, namely, plugging due to particulates, microbial contamination, and large pressure drop.  相似文献   

15.
A beta-1,3-xylanase-producing bacterium, Alcaligenes sp. XY-234, was isolated from the marine environment. The organism produced endo-1,3-beta-xylanase at a high level in the culture fluid. The enzyme was purified 292-fold by ammonium sulfate precipitation and several column chromatographies. The final enzyme preparation appeared to be homogeneous on disc gel electrophoresis and SDS-PAGE with a molecular mass of 59 kDa, and the pI was 4.0. The enzyme hydrolyzed beta-1,3-xylan and larger xylooligosaccharides than xylobiose to give several xylooligosaccharides, but it could not hydrolyze xylobiose, p-nitrophenyl-beta-D-xyloside, and beta-1,4-xylan. The Km of the enzyme was 4.0 mg/ml. Optimal pH and temperature were 7.5 and 40 degrees C, respectively. It was stable from pH 6.0 to 10 and at a temperature of less than 40 degrees C. The enzyme was strongly inhibited by 1 mM HgCl(2)., AlCl(3), CuCl(2), FeCl(3), HgCl(2), Pb(CH(3)COO) (2), and N-bromosuccinimide.  相似文献   

16.
The gram-negative antarctic bacterium Pseudoalteromonas sp. 22b, isolated from the alimentary tract of krill Thyssanoessa macrura, synthesizes an intracellular cold-adapted beta-galactosidase. The gene encoding this beta-galactosidase has been PCR amplified, cloned, expressed in Escherichia coli, purified, and characterized. The enzyme is active as a homotetrameric protein, and each monomer consists of 1028 amino acid residues. The enzyme was purified to homogeneity (50% recovery of activity) by using the fast, two-step procedure, including affinity chromatography on PABTG-Sepharose. Enzymatic properties of the recombinant protein are identical to those of native Pseudoalteromonas sp. 22b beta-galactosidase. The enzyme is cold-adapted and at 10 degrees C retains 20% of maximum activity. The purified enzyme displayed maximum activity close to 40 degrees C and at pH of 6.0-8.0. PNPG was its preferred substrate (58% higher activity than against ONPG). The enzyme was particularly thermolabile, losing all activities within 10 min at 50 degrees C. The hydrolysis of lactose in a milk assay revealed that 90% of milk lactose was hydrolyzed during 6 h at 30 degrees C and during 28 h at 15 degrees C. Because of its attributes, the recombinant Pseudoalteromonas sp. 22b beta-galactosidase could be applied at refrigeration temperatures for production of lactose-reduced dairy products.  相似文献   

17.
An extracellular exoinulinase (2,1-beta-D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable (100%) for 3 h at the optimum temperature of 50 degrees C. Mn2+ and Ca2+ produced a 2.4-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6 mg/ml and 41.3 mg/ml, respectively.  相似文献   

18.
Summary A β-galactosidase from Thermotoga maritima produced galacto-oligosaccharides (GOS) from lactose by transgalactosylation when expressed in Escherichia coli. The enzyme activity for GOS production was maximal at pH 6.0 and 90 °C. In thermal stability experiments, the enzyme followed first-order kinetics of pH and thermal inactivation, and half-lives at pH 5.0, pH 8.0, 80 °C, and 95 °C were 27 h, 82 h, 41 h, and 14 min, respectively, suggesting that the enzyme was stable below 80 °C and in the pH range of 5.0–8.0. Mn2+ was the most effective divalent cation for GOS production. Cu2+ and EDTA inhibited more than 84% of enzyme activity. GOS production increased with increasing lactose concentrations and peaked at 500 g lactose/l. Among tested enzyme concentrations, the highest production of GOS was obtained at 1.5 units enzyme/ml. Under the optimal conditions of pH 6.0, 80 °C, 500 g lactose/l, and 1.5 units enzyme/ml, GOS production was 91 g/l for 300 min, with a GOS productivity of 18.2 g/l · h and a conversion yield of GOS to lactose of 18%.  相似文献   

19.
A metagenomics approach is an efficient method of isolating novel and useful genes from uncultured microorganisms in diverse environments. In this research, a gene encoding a new esterase (EM2L8) was cloned and characterized from the metagenomic DNA library of a deep-sea sediment. The gene consisted of 804bp encoding a polypeptide of 267 amino acids with a molecular mass of 28,952. The deduced amino acid sequence showed similarities with the BioH of Kurthia, the 3-oxoadipate enol-lactonase of Haloarcula and the acyltransferase of Thermoanaerobacter, which feature identities of 38%, 32%, and 33%, respectively. Residues essential for esterase activity, such as pentapeptide (GXSXG) and catalytic triad sequences, were uncovered. While the protein was overproduced mainly as inclusion body at 37 degrees C, it was mainly produced as a soluble active enzyme at 18 degrees C. A zymogram analysis revealed that purified EM2L8 taken from the soluble fraction could hydrolyze tributyrin substrate. Furthermore, the protein from the inclusion body fraction also showed strong activity on gel, thus indicating that the protein was refolded during SDS-gel electrophoresis and the ensuing incubation period. When the inclusion body was mixed with some anionic detergent solutions and diluted with a non-detergent buffer, the insoluble EM2L8 refolded rapidly and recovered its full esterase activity. Although EM2L8 had an optimum temperature of 50-55 degrees C, its activation energy in the range of 10-40 degrees C was 8.34kcal/mol, indicating that it is a cold-adapted enzyme. Moreover, it was found to have an optimum pH of 10-11, thus revealing that it is an alkaline enzyme. In this paper, the new esterase EM2L8 buried in a deep-sea sediment became known on the surface and was characterized biochemically.  相似文献   

20.
The production of galacto-oligosaccharides (GOS) from lactose by A. oryzae beta-galactosidase immobilized on cotton cloth was studied. The total amounts and types of GOS produced were mainly affected by the initial lactose concentration in the reaction media. In general, more and larger GOS can be produced with higher initial lactose concentrations. A maximum GOS production of 27% (w/w) of initial lactose was achieved at 50% lactose conversion with 500 g/L of initial lactose concentration. Tri-saccharides were the major types of GOS formed, accounting for more than 70% of the total GOS produced in the reactions. Temperature and pH affected the reaction rate, but did not result in any changes in GOS formation. The presence of galactose and glucose at the concentrations encountered near maximum GOS greatly inhibited the reactions and reduced GOS yield by as much as 15%. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme, suggesting no diffusion limitation in the enzyme carrier. The thermal stability of the enzyme increased approximately 25-fold upon immobilization on cotton cloth. The half-life for the immobilized enzyme on cotton cloth was more than 1 year at 40 degrees C and 48 days at 50 degrees C. Stable, continuous operation in a plugflow reactor was demonstrated for 2 weeks without any apparent problem. A maximum GOS production of 21 and 26% (w/w) of total sugars was attained with a feed solution containing 200 and 400 g/L of lactose, respectively, at pH 4.5 and 40 degrees C. The corresponding reactor productivities were 80 and 106 g/L/h, respectively, which are at least several-fold higher than those previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号