首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-galactosidase from the probiotic strain Lactobacillus acidophilus R22 was purified to apparent homogeneity by ammonium sulphate fractionation, hydrophobic interaction, and affinity chromatography. The enzyme is a heterodimer consisting of two subunits of 35 and 72 kDa, as determined by gel electrophoresis. The optimum temperature of beta-galactosidase activity was 55 degrees C (10-min assay) and the range of pH 6.5-8, respectively, for both o-nitrophenyl-beta-D-galactopyranoside (oNPG) and lactose hydrolysis. The Km and Vmax values for lactose and oNPG were 4.04+/-0.26 mM, 28.8+/-0.2 micromol D-glucose released per min per mg protein, and 0.73+/-0.07 mM, 361+/-12 micromol o-nitrophenol released per min per mg protein, respectively. The enzyme was inhibited by high concentrations of oNPG with Ki,s=31.7+/-3.5 mM. The enzyme showed no specific requirements for metal ions, with the exception of Mg2+, which enhanced both activity and stability. The genes encoding this heterodimeric enzyme, lacL and lacM, were cloned, and compared with other beta-galactosidases from lactobacilli. Beta-galactosidase from L. acidophilus was used for the synthesis of prebiotic galacto-oligosaccharides (GOS) from lactose, with the maximum GOS yield of 38.5% of total sugars at about 75% lactose conversion.  相似文献   

2.
β-糖苷酶(ttβGLY)是Thermus thermophilus产生的一种耐高温酶,以乳糖为底物的酶反应研究表明:该酶具有较高的乳糖水解活性,其最适温度为70℃,最适pH为7.0,乳糖水解的Km=1.566mmol/L,Vmax=0.406mmol/min,在70℃有较好的热稳定性。该酶同时具有较强的转糖基活性,在以40%乳糖为底物,加酶量42.5U/mL、反应温度70℃、反应时间16h的条件下,低聚半乳糖的合成率达到35.3%。水解产物葡萄糖对乳糖水解反应和转糖基反应具有抑制作用,是影响GOS合成的重要因素。  相似文献   

3.
An exceptionally large beta-galactosidase, BIF3, with a subunit molecular mass of 188 kDa (1,752 amino acid residues) was recently isolated from Bifidobacterium bifidum DSM20215 [M?ller et al. (2001) Appl Environ Microbiol 67:2276-2283]. The BIF3 polypeptide comprises a signal peptide followed by an N-terminal beta-galactosidase region and a C-terminal galactose-binding motif. We have investigated the functional importance of the C-terminal part of the BIF3 sequence by deletion mutagenesis and expression of truncated enzyme variants in Escherichia coli. Deletion of approximately 580 amino acid residues from the C-terminal end converted the enzyme from a normal, hydrolytic beta-galactosidase into a highly efficient, transgalactosylating enzyme. Quantitative analysis showed that the truncated beta-galactosidase utilised approximately 90% of the reacted lactose for the production of galacto-oligosaccharides, while hydrolysis constituted a 10% side reaction. This 9:1 ratio of transgalactosylation to hydrolysis was maintained at lactose concentrations ranging from 10% to 40%, implying that the truncated beta-galactosidase behaved as a "true" transgalactosylase even at low lactose concentrations.  相似文献   

4.
An extracellular beta-galactosidase from a thermophilic fungus Rhizomucor sp. has been purified to homogeneity by successive DEAE cellulose chromatography followed by gel filtration on Sephacryl S-300. The native molecular mass of the enzyme is 250,000 and it is composed of two identical subunits with molecular mass of 120,000. It is an acidic protein with a pI of 4.2. Purified beta-galactosidase is a glycoprotein and contains 8% neutral sugar. The optimum pH and temperature for enzyme activity are 4.5 and 60 degrees C, respectively. The enzyme is stable at 60 degrees C for 4 h, and has a t(1/2) of 150 min(-1) at 70 degrees C which is one of the highest reported for fungal beta-galactosidases. Substrate specificity studies indicated that the enzyme is specific for beta-linked galactose residues with a preference for p-nitrophenyl-beta-D-galactopyranoside (pNPG). The Km and Vmax values for the synthetic substrates pNPG and o-nitrophenyl-beta-D-galactopyranoside (oNPG) were 0.66 mM and 1.32 mM; and 22.4 mmol min(-1) mg(-1) and 4.45 mmol min(-1) mg(-1), respectively, while that for the natural substrate, lactose, was 50.0 mM and 12 mmol min(-1) mg(-1). The end product galactose and the substrate analogue isopropyl thiogalactopyranoside (ITPG) inhibited the enzyme with Ki of 2.6 mM and 12.0 mM, respectively. The energy of activation for the enzyme using pNPG and oNPG were 27.04 kCal and 9.04 kCal, respectively. The active site characterization studies using group-specific reagents revealed that a tryptophan and lysine residue play an important role in the catalytic activity of the enzyme.  相似文献   

5.
Cho YJ  Shin HJ  Bucke C 《Biotechnology letters》2003,25(24):2107-2111
A beta-galactosidase, catalyzing lactose hydrolysis and galactooligosaccharide (GalOS) synthesis from lactose, was extracted from the yeast, Bullera singularis KCTC 7534. The crude enzyme had a high transgalactosylation activity resulting in the oligosaccharide conversion of over 34% using pure lactose and cheese whey permeate as substrates. The enzyme was purified by two chromatographic steps giving 96-fold purification with a yield of 16%. The molecular weight of the purified enzyme (specific activity of 56 U mg(-1)) was approx. 53 000 Da. The hydrolytic activity was the highest at pH 5 and 50 degrees C, and was stable to 45 degrees C for 2 h. Enzyme activity was inhibited by 10 mM Ag3+ and 10 mM SDS. The Km for lactose hydrolysis was 0.58 M and the maximum reaction velocity (V(max)) was 4 mM min(-1). GalOS, including tri- and tetra-saccharides were produced with a conversion yield of 50%, corresponding to 90 g GalOS l(-1) from 180 g lactose l(-1) by the purified enzyme.  相似文献   

6.
A beta-galactosidase isoenzyme, beta-Gall, from Bifidobacterium infantis HL96, was expressed in Escherichia coli and purified to homogeneity. The molecular mass of the beta-Gall subunit was estimated to be 115 kDa by SDS-PAGE. The enzyme appeared to be a tetramer, with a molecular weight of about 470 kDa by native PAGE. The optimum temperature and pH for o-nitrophenyl-beta-D-galactopyranoside (ONPG) and lactose were 60 degrees C, pH 7.5, and 50 degrees C, pH 7.5, respectively. The enzyme was stable over a pH range of 5.0-8.5, and remained active for more than 80 min at pH 7.0, 50 degrees C. The enzyme activity was significantly increased by reducing agents. Maximum activity required the presence of both Na+ and K+, at a concentration of 10 mM. The enzyme was strongly inhibited by p-chloromercuribenzoic acid, divalent metal cations, and Cr3+, and to a lesser extent by EDTA and urea. The hydrolytic activity using lactose as a substrate was significantly inhibited by galactose. The Km, and Vmax values for ONPG and lactose were 2.6 mM, 262 U/mg, and 73.8 mM, 1.28 U/mg, respectively. beta-Gall possesses strong transgalactosylation activity. The production rate of galactooligosaccharides from 20% lactose at 30 and 60 degrees C was 120 mg/ml, and this rate increased to 190 mg/ml when 30% lactose was used.  相似文献   

7.
N Onishi  T Tanaka 《Applied microbiology》1995,61(11):4026-4030
A thermostable beta-galactosidase which catalyzed the production of galacto-oligosaccharide from lactose was solubilized from a cell wall preparation of Sterigmatomyces elviae CBS8119. The enzyme was purified to homogeneity by means of chromatography on DEAE-Toyopearl, Butyl-Toyopearl, Chromatofocusing, and p-aminobenzyl 1-thio-beta-D-galactopyranoside agarose columns. The molecular weight of the purified enzyme was estimated to be about 170,000 by gel filtration with a Highload-Superdex 200pg column and 86,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its isoelectric point, determined by polyacrylamide gel electrofocusing, was 4.1. The optimal temperature for enzyme activity was 85 degrees C. It was stable at temperatures up to 80 degrees C for 1 h. The optimal pH range for the enzyme was 4.5 to 5.0, it was stable at pH 2.5 to 7.0, and its activity was inhibited by Hg2+. The Km values for o-nitrophenyl-beta-D-galactopyranoside and lactose were 9.5 and 2.4 mM, respectively, and the maximum velocities for these substrates were 96 and 240 mumol/min per mg of protein, respectively. In addition, this enzyme possessed a high level of transgalactosylation activity. Galacto-oligosaccharides, including tri- and tetrasaccharides, were produced with a yield, by weight, of 39% from 200-mg/ml lactose.  相似文献   

8.
9.
Summary A β-galactosidase from Thermotoga maritima produced galacto-oligosaccharides (GOS) from lactose by transgalactosylation when expressed in Escherichia coli. The enzyme activity for GOS production was maximal at pH 6.0 and 90 °C. In thermal stability experiments, the enzyme followed first-order kinetics of pH and thermal inactivation, and half-lives at pH 5.0, pH 8.0, 80 °C, and 95 °C were 27 h, 82 h, 41 h, and 14 min, respectively, suggesting that the enzyme was stable below 80 °C and in the pH range of 5.0–8.0. Mn2+ was the most effective divalent cation for GOS production. Cu2+ and EDTA inhibited more than 84% of enzyme activity. GOS production increased with increasing lactose concentrations and peaked at 500 g lactose/l. Among tested enzyme concentrations, the highest production of GOS was obtained at 1.5 units enzyme/ml. Under the optimal conditions of pH 6.0, 80 °C, 500 g lactose/l, and 1.5 units enzyme/ml, GOS production was 91 g/l for 300 min, with a GOS productivity of 18.2 g/l · h and a conversion yield of GOS to lactose of 18%.  相似文献   

10.
The gene (open reading frame (ORF) Tm1469, glk) encoding ATP-dependent ROK (repressors, ORFs, sugar kinases) glucokinase (ATP-GLK, EC 2.7.1.2) of the hyperthermophilic bacterium Thermotoga maritima was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 80 kDa composed of 36-kDa subunits. Rate dependence (at 80 degrees C) on glucose and ATP followed Michaelis-Menten kinetics with apparent Km values of 1.0 and 0.36 mM, respectively; apparent Vmax values were about 370 U mg(-1). The enzyme was highly specific for glucose as phosphoryl acceptor. Besides glucose only 2-deoxyglucose was phosphorylated to some extent, whereas mannose and fructose were not used. With a temperature optimum of 93 degrees C the enzyme is the most thermoactive bacterial ATP-GLK described.  相似文献   

11.
Porins of Pseudomonas fluorescens MFO as fibronectin-binding proteins   总被引:1,自引:0,他引:1  
Gene araA encoding an L-arabinose isomerase (AraA) from the hyperthermophile, Thermotoga neapolitana 5068 was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a polypeptide of 496 residues with a calculated molecular mass of 56677 Da. The deduced amino acid sequence has 94.8% identical amino acids compared with the residues in a putative L-arabinose isomerase of Thermotoga maritima. The recombinant enzyme expressed in E. coli was purified to homogeneity by heat treatment, ion exchange chromatography and gel filtration. The thermophilic enzyme had a maximum activity of L-arabinose isomerization and D-galactose isomerization at 85 degrees C, and required divalent cations such as Co(2+) and Mn(2+) for its activity and thermostability. The apparent K(m) values of the enzyme for L-arabinose and D-galactose were 116 mM (v(max), 119 micromol min(-1) mg(-1)) and 250 mM (v(max), 14.3 micromol min(-1) mg(-1)), respectively, that were determined in the presence of both 1 mM Co(2+) and 1 mM Mn(2+). A 68% conversion of D-galactose to D-tagatose was obtained using the recombinant enzyme at the isomerization temperature of 80 degrees C.  相似文献   

12.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:7,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

13.
A novel, thermostable adaptation of the coupled-enzyme assay for monitoring glucose concentrations was developed for an optimal temperature of 85 degrees C. This is the first report of a thermostable glucostat from a marine hyperthermophile. The continuous assay, using glucokinase (Glk) and glucose-6-phosphate dehydrogenase (Gpd) from Thermotoga maritima, demonstrated robust activity over a range of temperatures (75-90 degrees C) and pH values (6.8- 8.5). Purified glucokinase had a monomeric molecular mass of 33.8kDa while that of glucose-6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase) was 57.5kDa. The high-temperature assay provided a method for directly assaying the activity of another hyperthermophilic enzyme, 1,4-beta-D-glucan glucohydrolase (GghA) from Thermotoga neapolitana. To provide a benchmark for protein-engineering experiments involving GghA, a three-enzyme continuous assay (performed at 85 degrees C), linking wild-type GghA, Glk, and Gpd, measured glucose produced from GghA's hydrolysis of cellobiose, one of GghA's secondary substrates. The assay established the kinetic behavior of wild-type GghA toward cellobiose and was used to screen for changes in the catalytic efficiency of variant GghA(s) induced by random mutagenesis. The assay's development will allow high-throughput screening of other thermostable glucose-producing enzymes, including those applicable to commercial biomass conversion.  相似文献   

14.
Lipases are a class of enzymes which catalyze the hydrolysis of long-chain triglycerides. Microbial lipases are currently receiving much attention with the rapid development of enzyme technology. Bacillus subtilis FH5, isolated from tannery wastes, produced a thermostable alkalophilic lipase and was purified to homogeneity as judged by SDS-PAGE. The purification steps included acetone fractionation and sequential column chromatography on DEAE-cellulose, Sephadex G-75 and adsorption chromatography on Hydroxylapatite. The results of chromatographies showed that two types of lipases were present having molecular weights approximately 62 kDa and 24 kDa, respectively. The purified enzyme was found to be 100% stable at pH 10 and about 80% residual activity was present at 60 degrees C. The enzyme was found to be stable in the presence of Mg2+, Mn2+ and Ca2+ ions. Km value was calculated as 5.05 mM and Vmax as 0.416 micromol/ml/min. Bacillus subtilis FH5 was isolated from tannery waste, therefore, enzyme is environmentally compatible for application in leather degreasing process.  相似文献   

15.
To help clarify the control of arginine synthesis in Thermotoga maritima, the putative gene (argB) for N-acetyl-L-glutamate kinase (NAGK) from this microorganism was cloned and overexpressed, and the resulting protein was purified and shown to be a highly thermostable and specific NAGK that is potently and selectively inhibited by arginine. Therefore, NAGK is in T. maritima the feedback control point of arginine synthesis, a process that in this organism involves acetyl group recycling and appears not to involve classical acetylglutamate synthase. The inhibition of NAGK by arginine was found to be pH independent and to depend sigmoidally on the concentration of arginine, with a Hill coefficient (N) of approximately 4, and the 50% inhibitory arginine concentration (I0.5) was shown to increase with temperature, approaching above 65 degrees C the I0.50 observed at 37 degrees C with the mesophilic NAGK of Pseudomonas aeruginosa (the best-studied arginine-inhibitable NAGK). At 75 degrees C, the inhibition by arginine of T. maritima NAGK was due to a large increase in the Km for acetylglutamate triggered by the inhibitor, but at 37 degrees C arginine also substantially decreased the Vmax of the enzyme. The NAGKs of T. maritima and P. aeruginosa behaved in gel filtration as hexamers, justifying the sigmoidicity and high Hill coefficient of arginine inhibition, and arginine or the substrates failed to disaggregate these enzymes. In contrast, Escherichia coli NAGK is not inhibited by arginine and is dimeric, and thus the hexameric architecture may be an important determinant of arginine sensitivity. Potential thermostability determinants of T. maritima NAGK are also discussed.  相似文献   

16.
A gene encoding for a thermostable exopolygalacturonase (exo-PG) from hyperthermophilic Thermotoga maritima has been cloned into a T7 expression vector and expressed in Escherichia coli. The gene encoded a polypeptide of 454 residues with a molecular mass of 51,304 Da. The recombinant enzyme was purified to homogeneity by heat treatment and nickel affinity chromatography. The thermostable enzyme had maximum of hydrolytic activity for polygalacturonate at 95 degrees C, pH 6.0 and retains 90% of activity after heating at 90 degrees C for 5 h. Study of the catalytic activity of the exopolygalacturonase, investigated by means of 1H NMR spectroscopy revealed an inversion of configuration during hydrolysis of alpha-(1-->4)-galacturonic linkage.  相似文献   

17.
以海栖热袍菌 (Thermotoga maritima) MSB8菌株基因组DNA为模板,通过PCR扩增出木聚糖酶(XylanaseB)基因, 将此基因克隆至大肠杆菌表达载体pET_28a(+)和毕赤酵母表达载体pPIC9K,并分别转化大肠杆菌 BL21和毕赤酵母GS115。该木聚糖酶在大肠杆菌细胞中表达量高, 但不能分泌; 而在毕赤酵母细胞的表达产物可分泌至胞外。酶学性质分析表明,此酶分子量约为40kD,其最适反应温度为90℃, 最适反应pH值为6.65,且在碱性条件下稳定,具有重要的工业应用前景。  相似文献   

18.
从海栖热袍菌克隆出编码热稳定性b-葡萄糖醛酸酶基因, 以热激载体pHsh为表达质粒, 在大肠杆菌中得到高效表达。基因表达产物通过一步热处理后, 酶纯度达电泳均一。纯化重组酶酶学性质研究表明, b-葡萄糖醛酸酶的最适反应温度为80oC, 最适反应pH为5.0, pH 5.8~ 8.2之间酶的稳定性较好, 80oC的半衰期为2 h, SDS-PAGE结果显示分子量为65.9 kD, 与理论推算值相吻合。以对硝基苯-b-葡萄糖醛酸苷(pNPG)为底物时, 其动力学参数Km值0.18 mmol/L, Vmax值为312 u/mg。初步的应用分析表明, 该重组酶能催化甘草酸转化为甘草次酸。  相似文献   

19.
Purified β-glucosidase fromCellulomonas biazotea had an apparentK m andV for 2-nitrophenyl β-d-glucopyranoside (oNPG) of 0.416 mmol/L and 0.22 U/mg protein, respectively. The activation energy for the hydrolysis of pNPG of β-glucosidase was 65 kJ/mol. The inhibition by Mn2+ vs. oNPG of parental β-glucosidase was of mixed type with apparent inhibition constants of 0.19 and 0.60 μmol/L for the enzyme and enzyme-substrate complex, respectively. Ethanol at lower concentrations activated while at higher concentrations it inhibited the enzyme. The determination of apparent pK a’s at different temperatures and in the presence of 30 % dioxane indicated two carboxyl groups which control theV value. The thermal stability of β-glucosidase decreased in the presence of 10 % ethanol. The half-life of β-glucosidase in 1.75 mol/L urea at 35 °C was 145 min, as determined by 0–9 mol/L transverse urea gradient-PAGE. This work was financed in part by a grant made by theUS Agency for International Development under PSTC proposal 6-163,USAID grant no. 9365542-G-00-89-42-00, and PAEC.  相似文献   

20.
An enzyme catalyzing hydrolysis of beta-1,4 bonds in cellulose acetate was purified 18.3-fold to electrophoretic homogeneity from a culture supernatant of Neisseria sicca SB, which can assimilate cellulose acetate as the sole carbon and energy source. The molecular mass of the enzyme was 41 kDa and the isoelectric point was 4.8. The pH and temperature optima of the enzyme were 6.0-7.0 and 60 degrees C. The enzyme catalyzed hydrolysis of water-soluble cellulose acetate (degree of substitution, 0.88) and carboxymethyl cellulose. The Km and Vmax for water-soluble cellulose acetate and carboxymethyl cellulose were 0.242% and 2.24 micromol/min/mg, and 2.28% and 12.8 micromol/min/mg, respectively. It is estimated that the enzyme is a kind of endo-1,4-beta-glucanase (EC 3.2.1.4) from the substrate specificity and hydrolysis products of cellooligosaccharides. The enzyme and cellulose acetate esterase from Neisseria sicca SB degraded water-insoluble cellulose acetate by synergistic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号