首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Two species of anaerobic fungi, i.e. Piromyces strain E2 and Neocallimastix patriciarum strain N2, were cultivated in a 10-l batch fermenter with filter- paper cellulose as the carbon source. The accumulation of fermentation products, production of extracellular protein and (hemi-)cellulolytic enzymes were monitored during growth. Growth of Piromyces E2 in the fermenter resulted in a shift in the fermentation pattern to more acetate and formate and less ethanol, lactate, succinate and malate, possibly because of removal of hydrogen. The specific activities of Avicelase, endoglucanase, β-glucosidase and xylanase were up to threefold higher compared to small batch cultures. Enzyme activities produced per gram of cellulose were up to four times the values reported for Piromyces E2 grown in a semi-continuous coculture with the methanogen Methanobacterium formicicum. The performance of fermenter enzyme preparations from the anaerobic fungi with respect to hydrolysis of Avicel compared well to that of preparations of Trichoderma reesei. However, addition of exogenous β-glucosidase was indispensible with the latter preparation for the complete conversion to glucose. Received: 14 December 1995/Received revision: 19 March 1996/Accepted: 25 March 1996  相似文献   

2.
Cellulase production by Trichoderma harzianum E58 grown on lactose and various cellulosic substrates such as Solka Floe, Avicel, and steamed aspenwood was investigated. The culture filtrates of T. harzianum E58 obtained after growth on these substrates were assayed for their cellulase activities and overall hydrolytic activities. The severity of the steaming conditions used for the aspenwood had a pronounced effect on the cellulolytic activity of the produced culture filtrates. Those substrates that were more readily hydrolyzed by the cellulase complex were the poorest substrates for inducing an active cellulase complex. Substrates such as acid-impregnated aspenwood and lactose induced a less hydrolytic efficient cellulase complex than more recalcitrant substrates such as microcrystalline cellulose.  相似文献   

3.
Summary A system was developed for the semi-continuous cultivation of an anaerobic fungus, Piromyces sp. strain E2 (isolated from an Indian elephant), on Avicel (microcrystalline cellulose). The fungus was grown in a semi-continuous culture system: solids and fungal biomass was retained by means of a simple filter construction whereas the culture fluid was removed continuously. The production of fermentation products (acetate, ethanol, formate, lactate, hydrogen or methane), cellulolytic and xylanolytic enzymes, and protein by the fungus in monoculture or co-culture with Methanobacterium formicicum during growth on Avicel was monitored up to 45 days. These productions stabilized after an adaptation period of 24 and 30 days in the semi-continuous co-culture and monoculture, respectively. After this period the average (±SD) avicelase, -glucosidase, endoglucanase, and xylanase production in the semi-continuous monoculture were 27±6, 140±16, 1057±120 and 5012±583 IU.l–1.dya–1, respectively. Co-culture with the methanogen caused a shift in fermentation products to more acetate, and less ethanol and lactate. Furthermore, the production of all cellulolytic enzymes increased (40%) and xylanolytic enzyme production decreased (35%).Correspondence to: H. J. M. Op den Camp  相似文献   

4.
Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, >92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products - ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively.  相似文献   

5.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, β-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20–44·5°C and at pH values 5·2–7·4 with optimal growth at 37–41·5°C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5·0, the optimum temperature was 40°C for the endoglucanase and 50°C for the xylanase. Both enzyme activities were inhibited at 70°C. Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

6.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, beta-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20-44.5 degrees C and at pH values 5.2-7.4 with optimal growth at 37-41.5 degrees C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5.0, the optimum temperature was 40 degrees C for the endoglucanase and 50 degrees C for the xylanase. Both enzyme activities were inhibited at 70 degrees C Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

7.
Summary Paecilomyces inflatus isolated from municipal waste compost was found to have cellulolytic activity in several solid and liquid media. This study was done to reveal the multifarious effects of municipal waste compost on endoglucanase activity of P. inflatus. The highest enzyme activities under the conditions of solid-state fermentation were measured in authentic compost samples compared with wood, straw and bran substrates. In surface liquid cultures glucose, cellobiose, xylan, Avicel cellulose, carboxymethylcellulose (CM-cellulose), starch and citrus pectin were used as carbon sources. All carbon sources supported the growth of P. inflatus. However, only CM-cellulose, cellobiose and pectin noticeably stimulated endoglucanase (EG) activity. Further stimulation of EG activity was obtained in cultures containing 1% CM-cellulose as a carbon source by supplementation with low-molecular mass aromatic compounds vanillin, veratric acid and benzoic acid, and with soil humic acid (SHA). SHA and veratric acid were found to be the most efficient elicitors of the cellulolytic activity. P. inflatus was able to utilize nitrate and ammonium as pure nitrogen sources in media containing cellulose.  相似文献   

8.
Summary Analyses of sewage solids show cellulose to be one of the chief components. Culture counts of cellulolytic bacteria in a primary anaerobic sewage digestor show them to be present in numbers as high as 1 million per ml. The tendency of cellulolytic bacteria to cling to cellulose fibers makes it highly probable that the number of cellulolytic cells is much larger. All 10 cellulolytic strains isolated in pure culture show better growth in solid than in liquid media, and for some of them agar possesses growth promoting properties. For some strains, phytone and trypticase can replace the agar but other strains could not be grown in media containing no agar. Hydrogen, carbon dioxide, ethanol, formic acid, acetic acid, and lactic acid have been identified as fermentation products and glucose shown to be a product of cellulose digestion. Cellobiose, starch, dextrin, and maltose were fermented by 5 tested strains, inulin and esculin by one of them, but none of 17 other carbohydrates, including glucose, were attacked. The rate of cellulose fermentation by a mixed culture of aClostridium sp. and a cellulose decomposer is much greater than the rate by the latter alone. The rate of fermentation by a pure culture is not affected by acetate concentrations up to 5000 parts per million. It is postulated that the rate of fermentation of cellulose may be the factor limiting the rate of sewage fermentation though more evidence regarding rates of fermentation of other constituents of sewage is needed before final conclusions can be drawn. This investigation was supported in part by a research grant from the National Institute of Health, U.S. Public Health Service.  相似文献   

9.
Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation.  相似文献   

10.
In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.  相似文献   

11.
The anaerobic growth and fermentation of a marine isolate of Paecilomyces lilacinus is described. The fungus was isolated from mullet gut and grew optimally at 30°C and at a salinity of ≥10%. The best growth was obtained with glucose or laminarin as substrate, and the growth yield was 5.0 g (dry weight of fungus) per mol of hexose fermented. Moles of products as a percentage of moles of hexose fermented were acetate, 29.0%; ethanol, 156.6%; CO2, 108.0%; and lactate, 4.3%. Together these products accounted for >80% of hexose carbon. Hydrogen and formate were not detectable as fermentation end products (<0.5%). Other substrates utilized for growth, although less effectively than laminarin or glucose, included the monosaccharides galactose, fructose, arabinose, and xylose and the disaccharides maltose and cellobiose. No growth of the fungus occurred on cellulose, and of a variety of other polysaccharides tested only xylan supported growth.  相似文献   

12.
Growth, enzyme-producing activity and respiratory properties of Trichoderma reesei QM 9414 were examined under various agitation intensities. Two substrates were compared: lactose and Avicel. Pellet formation occurred at all agitation intensities for both substrates. Oxygen dependence at the lower agitation rate varied with the substrate type. With lactose as the carbon source, linear growth was observed, despite a regulation of the dissolved oxygen concentration at 30% saturation. The enzyme production was strongly affected by the agitation. At the higher agitation rates the enzyme production dropped. With Avicel as the carbon source, the production of enzymes surged as soon as the growth was limited by the hydrolysis of Avicel.Growth on Avicel, in the conditions we used, was limited by Avicel hydrolysis. Cubic growth was observed when lactose was the carbon source. A new derivation for a model of the observed cubic growth is proposed and is used to correlate growth, CO2 production and oxygen consumption in a consistent way, impossible with exponential growth models.  相似文献   

13.
The growth behavior of Chaetomium cellulolyticum, a new cellulolytic fungus, has been examined in slurry fermentation systems using various chemically pretreated sawdusts from hardwoods as substrates. Both acid- and alkali-pretreatment methods were used and the fermentation media included the spent pretreatment liquor in an attempt to concurrently maximize substrate utilization and minimize the biological oxygen demand (BOD) level in the process effluent. Diauxic growth patterns were found in the three cases studied, suggesting an initial utilization of soluble hemicellulose sugars followed by utilization of the insoluble cellulose. This behavior patterns was supported by separate growth experiments using the major sugars of hemicellulose as carbon sources. The organism was found to be a good convertor of both cellulose and hemicelluloses into single cell protein (SCP). In terms of rate and extent of protein production in the insoluble biomass product, acid pretreatment appears to be better than alkali pretreatment if the product is intended as ruminant feed.  相似文献   

14.
Riboflavin production is significantly determined by the type and initial concentration of the carbon and nitrogen sources and also by other flavinogenic stimulants. Using an optimum carbon and nitrogen concentration, an industrial fermentation medium has been designed with molasses as the carbon source and peanut seed cake as the nitrogen source. In addition the stimulatory effect of some of the low-cost agro-industrial by-products on riboflavin yield was investigated. Received: 10 March 1996 / Received revision: 25 June 1996 / Accepted: 14 July 1996  相似文献   

15.
A. Gehin, C. Cailliez, E. Petitdemange And L. Benoit. 1996. The degradation of cellulose by Clostridium celulolyticum has been studied in several ways; (1) in batch fermentation in 50-ml sealed-cap flasks, referred to as the control; (2) in batch fermentation with pH at 7.2; (3) fermentation in dialysis which permits elimination of all the products of metabolism; (4) fermentation in dialysis with a constant bubbling of nitrogen; (5) in co-culture with Clostridium A22 in batch with and without pH regulation and with dialysis. H2, CO2, acetate, ethanol and lactate were the major end-products of cellobiose and cellulose fermentation. Compared to batch culture, growth of CI. cellulolyticum on cellobiose increased by a factor of 10 in dialysed culture. The end products from the dialysed culture were detected in a small range compared to the concentration for the batch culture. Related to the biomass, CMCase activities were of the same level, showing a direct relation between the biomass formation and the cellulase production. The percentage of cellulose degradation (50%) by CI. cellulolyticum was greater when dialysis of end products with a constant bubbling of nitrogen took place during the course of fermentation (6 d) in comparison with cultures in 50-ml sealedcap flasks (23%), in a fermentor (36%) or using dialysis without N2 bubbling (40%). The presence of two micro-organisms produced no further enzyme activities and hence the percentage of cellulose degradation was quite similar in mono- and co-culture. No synergistic action was found between two cellulolytic strains.  相似文献   

16.
Anaerobic enrichment cultures with Avicel as substrate and inoculated with biomat samples from Icelandic hot springs were cultured at 70 ° or 78 °C and examined for the presence of microorganisms that produce extracellular cellulolytic and xylanolytic enzymes. From four enrichments grown at 78 °C eighteen strains were isolated. Five of the strains were screened for their substrate utilization, and on the basis of differences in morphology and substrates used, the two most unique strains were selected for further characterization. All cellulolytic cultures were rod-shaped and non-sporeforming. Motility was not observed. Cells stained gram-negative at various stages of the growth phase. During growth on Avicel, most cultures produced acetate as the major fermentation product, with smaller amounts of lactic acid and ethanol. Carbon dioxide and hydrogen were also produced. The phenotypic characteristics of the enrichment cultures and of isolates are described and assessed in relation to temperature and pH in the hot spring environment. A comparison is made between Icelandic strains isolated in our laboratory and strains isolated from hot springs from other parts of the world. The biotechnological potential of this group of bacteria is briefly discussed.  相似文献   

17.
The processive endoglucanase Cel9A of the moderately thermophilic actinomycete Thermobifida fusca was functionally produced in Saccharomyces cerevisiae. Recombinant Cel9A displayed activity on both soluble (carboxymethylcellulose) and insoluble (Avicel) cellulose substrates confirming its processive endoglucanase activity. High-performance anionic exchange chromatography analyses of soluble sugars released from Avicel revealed a cellobiose/glucose ratio of 2.5 ± 0.1. Growth by the recombinant strain on amorphous cellulose was possible due to the sufficient amount of glucose cleaved from the cellulose chain. This is the first confirmed report of S. cerevisiae growing on a cellulosic substrate as sole carbohydrate source while only expressing one recombinant gene. To improve the cellulolytic capability of S. cerevisiae and to investigate the level of synergy among cellulases produced by a recombinant host, the cel9A gene was co-expressed with four cellulase-coding genes of Trichoderma reesei: two endoglucanases cel5A (egII) and cel7B (egI), and two cellobiohydrolases cel6A (cbhII) and cel7A (cbhI). Synergy, especially between the Cel9A and the two cellobiohydrolases, resulted in a higher cellulolytic capability of the recombinant host.  相似文献   

18.
Bioconversion of cellulose to acetate was accomplished with cocultures of two organisms. One was the cellulolytic species Ruminococcus albus. It ferments crystalline cellulose (Avicel) to acetate, ethanol, CO(inf2), and H(inf2). The other organism (HA) obtains energy for growth by using H(inf2) to reduce CO(inf2) to acetate. HA is a gram-negative coccobacillus that was isolated from horse feces. Coculture of R. albus with HA in batch or continuous culture alters the fermentation products formed from crystalline cellulose by the ruminococcus via interspecies H(inf2) transfer. The major product of the fermentation by R. albus and HA coculture is acetate. High concentrations of acetate (333 mM) were obtained when batch cocultures grown on 5% cellulose were neutralized with Ca(OH)(inf2). Continuous cocultures grown at retention times of 2 and 3.1 days produced 109 and 102 mM acetate, respectively, when fed 1% cellulose with utilization of 84% of the substrate.  相似文献   

19.
The fermentation of cellulose by an ovine rumen anaerobic fungus in the absence and presence of rumen methanogens is described. In the monoculture, moles of product as a percentage of the moles of hexose fermented were: acetate, 72.7; carbon dioxide, 37.6; formate, 83.1; ethanol, 37.4; lactate, 67.0; and hydrogen, 35.3. In the coculture, acetate was the major product (134.7%), and carbon dioxide increased (88.7%). Lactate and ethanol production decreased to 2.9 and 19%, respectively, little formate was detected (1%), and hydrogen did not accumulate. Substantial amounts of methane were produced in the coculture (58.7%). Studies with [2-14C]acetate indicated that acetate was not a precursor of methane. The demonstration of cellulose fermentation by a fungus extends the range of known rumen organisms capable of participating in cellulose digestion and provides further support for a role of anaerobic fungi in rumen fiber digestion. The effect of the methanogens on the pattern of fermentation is interpreted as a shift in flow of electrons away from electron sink products to methane via hydrogen. The study provides a new example of intermicrobial hydrogen transfer and the first demonstration of hydrogen formation by a fungus.  相似文献   

20.
The fermentation of cellulose by a rumen anaerobic fungus in the presence of Methanobrevibacter sp. strain RA1 and Methanosarcina barkeri strain 227 resulted in the formation of 2 mol each of methane and carbon dioxide per mol of hexose fermented. Coculture of the fungus with either Methanobrevibacter sp. or M. barkeri produced 0.6 and 1.3 mol of methane per mol of hexose, respectively. Acetate, formate, ethanol, hydrogen, and lactate, which are major end products of cellulose fermentation by the fungus alone, were either absent or present in very low quantities at the end of the triculture fermentation (≤0.08 mol per mol of hexose fermented). During the time course of cellulose fermentation by the triculture, hydrogen was not detected (<1 × 10−5 atm; <0.001 kPa) and only acetate exhibited transitory accumulation; the maximum was equivalent to 1.4 mol per mol of hexose at 6 days which was higher than the total acetate yield of 0.73 in the fungus monoculture. The effect of methanogens is interpreted as a shift in the flow of electrons away from the formation of electron sink products lactate and ethanol to methane via hydrogen, favoring an increase in acetate, which is in turn converted to methane and carbon dioxide by M. barkeri. The maximum rate of cellulose degradation in the triculture (3 mg/ml per day) was faster than previously reported for bacterial cocultures and within 16 days degradation was complete. The triculture was used successfully also in the production of methane from cellulose in the plant fibrous materials, sisal (fiber from leaves of Agave sisalona L.) and barley straw leaf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号