首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1963年,Margoliash在比对不同物种细胞色素C序列后,发现了出乎意料的遗传等距离结果,这与几乎同时间Zuckerkandl和Pauling的血红蛋白发现是同一现实的不同反映.一个就事论事的分子钟假说因而被提出,并长期被某些学者认为是真实的自然现象,导致Kimura提出中性理论来解释分子钟.多年的研究发现了无数矛盾,分子钟仅有有限的局部存在.但被忽略的是,分子钟的瓦解自然使遗传等距离成为未解之谜.近年来,本实验室偶然重新发现了这一至今还几乎无人知晓、并未被充分重视的现象.通过整合现有理论的正确内容,并引入最大遗传变异极限这一原创概念,提出了一个更全面的遗传进化学说,重新解读了遗传等距离及其他主要进化现象.该假说将改写物种亲缘关系树及群体遗传学,并解决一些现有理论给不出线索的生物医学难题.  相似文献   

2.
核酸序列的比较研究使进化真菌学的面貌发生了革命性的变化,分子系统发育揭示的关系反映出真菌进化的复杂性和多样性,真菌系统学反映真菌进化关系的自然系统还有很大的距离,有赖于新物种的不断发现和分子系统发育证据的不断丰富。  相似文献   

3.
为阐明锁阳(Cynomorium songaricum)的遗传结构与遗传多样性, 以甘肃省河西走廊地区及青海省共18个居群的188个锁阳个体为研究对象, 利用现代分子生物学技术, 采用序列分析方法从核-质基因方面对遗传结构进行了分析。结果显示, 锁阳ITS序列总长度为687 bp, 含有7个变异位点, 定义9个单倍型, 整体单倍型多态性Hd=0.294 20, 核苷酸多样性π=0.000 49。在整个单倍型网络中介图中, 单倍型H1位于中心位置, 并在所有的居群中均有分布, 为核心的古老单倍型。分子方差分析结果显示, 锁阳种群变异主要来源于种群内。根据ITS序列得到的群体间遗传分化系数以及Mantel检验结果, 锁阳种群间的遗传距离与地理距离之间不存在相关性, 表明现存的锁阳居群是相对近期发生生境片段化的产物。中性检验结果表明, 锁阳拒绝中性进化, 群体历经扩张或者基因座位受到负选择作用, 其中性零假说不能被排除。该研究为锁阳的系统分类、资源鉴定以及保护措施的制定提供了分子证据。  相似文献   

4.
不同水系河蟹已发现严重混杂,水产业中急需一种快速鉴别不同水系的分子标记。基于研究13条长约853bp的线粒体ND5基因序列分析得出,其平均碱基组成为40.2%A,30.9%T,9.2%G,19.7%C,共定义了8个单元型,单元型多样性(h)为0.885;序列间存在16个变异位点,核苷酸多样性(π)为0.004;平均遗传距离为0.004。其中单元型EJSⅠ和EJSⅡ占据了53.8%的个体数量,推测可能是较为原始类型;两单元型在NJ和UPG-MA系统发生树中分居于不同的分支,可能蕴涵着各自进化历史。通过研究表明,ND5序列的变异水平将为采用PCR-RFLP或位点特异性PCR等分子标记分辨不同水系河蟹起着重要作用。  相似文献   

5.
全面了解中国乌骨鸡的遗传背景有利于保护和开发利用其种质资源。本研究测定了中国12个乌骨鸡品种线粒体细胞色素c氧化酶亚基I (cytochrome c oxidase subunit I, COI)基因, 比较分析其遗传多样性和群体遗传结构。255份乌骨鸡样品共检测到22个变异位点, 占分析位点的3.17%; 核苷酸多样性为0.00142-0.00339, 单倍型多样性为0.380-0.757, 其中略阳乌鸡核苷酸多样性最高, 德化黑鸡最低。检测到7个氨基酸变异位点, 来自6个品种共11个个体。定义了24种单倍型, 其中单倍型H1和H3为12个乌骨鸡品种共享, 出现频率分别为115次和64次; 盐津乌骨鸡单倍型数最多, 广西乌鸡最少。中性检验与错配分析显示实验种群未经历显著的群体扩张事件。分子变异分析显示81.06%的变异来自群体内; 品种间遗传距离为0.002-0.004, 品种间遗传分化系数Fst值为-0.035至0.594, 雪峰乌骨鸡与其他种群间的遗传分化程度最高。邻接树显示, 乌骨鸡未能独立形成分支, 不能从家鸡和红原鸡中有效区分开来。中国乌骨鸡中介网络图将24个单倍型分为3条进化主支, 呈现出一定的品种特异性, 由无量山乌骨鸡、云南盐津乌骨鸡和雪峰乌骨鸡组成单倍型H8、H9、H11、H12游离于这3条进化主支之外。增加其他家鸡和红原鸡COI基因的中介网络图主体结构与中国乌骨鸡的相同。结果表明中国乌骨鸡品种遗传多样性较低, 但品种间遗传分化显著, 可能是从当地家鸡中选育而来, 需要加强种质资源的保护。  相似文献   

6.
RNase5是RNASE A基因超家族中的一个重要成员,是分子进化研究的理想模型之一。基于基因组水平,我们对啮齿目的3个进化枝10科17个物种开展RNase5的分子进化研究。利用TBlastN及BlastN方法鉴定每个基因组的RNase5基因,发现该基因在啮齿目的Ctenohystrica所有物种发生丢失,时间是在Ctenohystrica形成之后;邻接法和最大似然法构建的系统发育树均支持RNase5在“与小家鼠相关的进化枝”的小家鼠、褐家鼠和拉布拉多白足鼠发生三次独立基因复制事件;利用PAML软件的枝模型、位点模型及枝-位点模型计算选择压力,均检测到RNase5基因受到强烈的正选择作用。总之,我们的研究深入系统开展了RNase5在啮齿目中的分子进化,增加了该基因研究的多样性,为进一步系统认识该基因在动物的适应性进化遗传机制奠定了基础。  相似文献   

7.
越来越多的实验证据表明,tRNA基因与噬菌体及原核生物的整合位点密切相关。tRNA基因与tmRNA基因自身的独特结构使得其可被频繁的利用作为遗传元件的整合位点。本文对tRNA基因的结构特征、整合位点在tRNA基因中的亚定位情况、整合酶的系统进化与attB在tRNA基因中亚定位的关系、新整合位点使用的进化、tRNA基因整合位点的选择及识别的类属性假设等做了简要介绍。  相似文献   

8.
1983年,有学者首次发表现代人线粒体DNA进化树,认为现代人可能起源自亚洲。1987年,又有学者按照分子钟假说得到线粒体在10-20万年前出自非洲的推论。随后,以分子钟为前提的Y染色体和常染色体DNA研究也支持了出非洲的结论,该结论逐渐成为分子进化领域的主流理论。2010年,对尼安德特人常染色体基因组的研究指出其对现代人有遗传贡献,这颠覆了人们先前关于现代人只来源自非洲,其他大洲的当地古人被完全取代的认知。目前,单地区起源说已经被修正为同化说。尽管学界对非洲人遗传多样性最高这一现象有共识,但是对该现象的不同解读却可以得出两种迥然不同的结果,现代人出亚洲说和出非洲说。大量研究证实基因组的大部分序列是有功能的,并处在遗传变异水平的饱和态,这质疑了中性理论以及由它推导的现代人出非洲说的合理性,而中性理论的提出恰恰是用来解释并非普遍存在的分子钟的。近年来已经有研究者从新理论的角度解读遗传多样性的饱和态和线性态,人们对现代人起源的认识将会进一步加深完善。  相似文献   

9.
为从分子水平上探究西藏牦牛类群的遗传多样性、亲缘关系,本研究测定了日多牦牛、类乌齐牦牛、丁青牦牛、错那牦牛、隆子牦牛、仲巴牦牛、聂荣牦牛、申札牦牛等8 个西藏牦牛类群共328 头牦牛mtDNAD-loop区序列,分析其多态性,构建系统进化树。结果表明:本次测定的西藏牦牛mtDNA D-loop 区序列长度为 887 - 895 bp,共检测到135 个变异位点,其中单态突变位点52 个,简约信息位点83 个。在328 个个体中共检测出91 种单倍型,平均单倍型多样性(Hd)、平均核苷酸多样性(π)分别为0. 884、0.010 27,显示西藏牦牛具有丰富的遗传多样性。8 个类群间平均遗传距离为0.011;日多牦牛与错那牦牛间遗传距离最小(0. 006);类乌 齐牦牛与隆子牦牛间遗传距离最大(0.015)。系统进化分析显示西藏牦牛可分为两大类,错那牦牛是较纯的牦牛类群,其它牦牛类群在进化过程中出现相互交流的情况。  相似文献   

10.
跳钩虾Platorchestia japonica栖息于湖泊、河流岸边,是重要的环境指示生物。本研究以线粒体COⅠ基因片段为分子标记,对北京及其周边地区22个采样点的128个样本进行种群遗传多样性和遗传结构研究。结果显示,623 bp的COⅠ基因序列中有567个保守位点、56个变异位点和38个简约信息位点。128个样本检测到43个单倍型,单倍型多样性为0.938,核苷酸多样性为0.011 72。最大似然法和贝叶斯法构建的系统发育树以及单倍型网络图表明,研究区域跳钩虾没有明显的地理种群结构,但所有单倍型形成2个遗传进化支。分子变异分析结果证实,跳钩虾2个进化支间的遗传变异显著高于进化支内的,进化支间固定系数为0.852 19,表明2个进化支遗传分化明显。本研究为进一步研究中国区域跳钩虾的遗传结构提供了有意义的基础数据。  相似文献   

11.
In 1963,Margoliash discovered the unexpected genetic equidistance result after comparing cytochrome c sequences from different species.This finding,together with the hemoglobin analyses of Zuckerkandl and Pauling in 1962,directly inspired the ad hoc molecular clock hypothesis.Unfortunately,however,many biologists have since mistakenly viewed the molecular clock as a genuine reality,which in turn inspired Kimura,King,and Jukes to propose the neutral theory of molecular evolution.Many years of studies have found numerous contradictions to the theory,and few today believe in a universal constant clock.What is being neglected,however,is that the failure of the molecular clock hypothesis has left the original equidistance result an unsolved mystery.In recent years,we fortuitously rediscovered the equidistance result,which remains unknown to nearly all researchers.Incorporating the proven virtues of existing evolutionary theories and introducing the novel concept of maximum genetic diversity,we proposed a more complete hypothesis of evolutionary genetics and reinterpreted the equidistance result and other major evolutionary phenomena.The hypothesis may rewrite molecular phylogeny and population genetics and solve major biomedical problems that challenge the existing framework of evolutionary biology.  相似文献   

12.
Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.  相似文献   

13.
Conventional wisdom predicts that sequential founder events will cause genetic diversity to erode in species with expanding geographic ranges, limiting evolutionary potential at the range margin. Here, we show that invasive European starlings (Sturnus vulgaris) in South Africa preserve genetic diversity during range expansion, possibly as a result of frequent long‐distance dispersal events. We further show that unfavourable environmental conditions trigger enhanced dispersal, as indicated by signatures of selection detected across the expanding range. This brings genetic variation to the expansion front, counterbalancing the cumulative effects of sequential founding events and optimizing standing genetic diversity and thus evolutionary potential at range margins during spread. Therefore, dispersal strategies should be highlighted as key determinants of the ecological and evolutionary performances of species in novel environments and in response to global environmental change.  相似文献   

14.
D. Curnoe  A. Thorne   《HOMO》2003,53(3):201-224
Despite the remarkable developments in molecular biology over the past three decades, anthropological genetics has had only limited impact on systematics in human evolution. Genetics offers the opportunity to objectively test taxonomies based on morphology and may be used to supplement conventional approaches to hominid systematics. Our analyses, examining chromosomes and 46 estimates of genetic distance, indicate there may have been only around 4 species on the direct line to modern humans and 5 species in total. This contrasts with current taxonomies recognising up to 23 species.

The genetic proximity of humans and chimpanzees has been used to suggest these species are congeneric. Our analysis of genetic distances between them is consistent with this proposal. It is time that chimpanzees, living humans and all fossil humans be classified in Homo. The creation of new genera can no longer be a solution to the complexities of fossil morphologies. Published genetic distances between common chimpanzees and bonobos, along with evidence for interbreeding, suggest they should be assigned to a single species.

The short distance between humans and chimpanzees also places a strict limit on the number of possible evolutionary side branches that might be recognised on the human lineage. All fossil taxa were genetically very close to each other and likely to have been below congeneric genetic distances seen for many mammals.

Our estimates of genetic divergence suggest that periods of around 2 million years are required to produce sufficient genetic distance to represent speciation. Therefore, Neanderthals and so-called H. erectus were genetically so close to contemporary H. sapiens they were unlikely to have been separate species. Thus, it is likely there was only one species of human (H. sapiens) for most of the last 2 million years. We estimate the divergence time of H. sapiensfrom 16 genetic distances to be around 1.7 Ma which is consistent with evidence for the earliest migration out of Africa. These findings call into question the mitochondrial «African Eve» hypothesis based on a far more recent origin for H. sapiens and show that humans did not go through a bottleneck in their recent evolutionary history.

Given the large offset in evolutionary rates of molecules and morphology seen in human evolution, Homo species are likely to be characterised by high levels of morphological variation and low levels of genetic variability. Thus, molecular data suggest the limits for intraspecific morphological variation used by many palaeoanthropologists have been set too low. The role of phenotypic plasticity has been greatly underestimated in human evolution.

We call into question the use of mtDNA for studies of human evolution. This DNA is under strong selection, which violates the assumption of selective neutrality. This issue should be addressed by geneticists, including a reassessment of its use for molecular clocks. There is a need for greater cooperation between palaeoanthropologists and anthropological geneticists to better understand human evolution and to bring palaeoanthropology into the mainstream of evolutionary biology.  相似文献   


15.
All of the major groups of fossil hominids (australopithecines, pithecanthropines, Neandertals, and early sapiens) were discovered by 1925, and therefore prior to the formulation of the synthetic theory of evolution that revolutionized the concept of the species in systematics. While these fossil finds were being made the framework for their interpretation included several assumptions: (1) that the number of living hominoid species was great, and that intraspecific variation was slight (authoritative sources recognized as many as 14 separate species of chimpanzees and 15 species of gorillas); (2) that the timescale of human evolution was brief (measured in tens or hundreds of thousands of years). As a result of these premises the consensus that hominid evolution was characterized by a large number of sympatric and synchronic species was virtually inevitable.In contrast, recent molecular studies demonstrate that genetic diversity among recent hominoids is so slight that even humans and chimpanzees differ at only about 1% of the loci that have been sampled so far; evidently, very small genetic differences can produce rather great contrasts in morphology. At the same time, geological break-throughs have increased the timescale for human evolution to several million years.It is concluded that morphological differences among fossil hominids, even if very appreciable and complex, do not necessarily reflect a great degree of either genetic or taxonomic diversity. Potential effects of evolutionary change through time should be incorporated into models of hominid evolution as a means of assessing the minimum number of lineages required to account for observed variations among hominid specimens.  相似文献   

16.
The postcranial axial skeleton exhibits considerable morphological and functional diversity among living primates. Particularly striking are the derived features in hominoids that distinguish them from most other primates and mammals. In contrast to the primitive catarrhine morphotype, which presumably possessed an external (protruding) tail and emphasized more pronograde trunk posture, all living hominoids are characterized by the absence of an external tail and adaptations to orthograde trunk posture. Moreover, modern humans evolved unique vertebral features that satisfy the demands of balancing an upright torso over the hind limbs during habitual terrestrial bipedalism. Our ability to identify the evolutionary timing and understand the functional and phylogenetic significance of these fundamental changes in postcranial axial skeletal anatomy in the hominoid fossil record is key to reconstructing ancestral hominoid patterns and retracing the evolutionary pathways that led to living apes and modern humans. Here, we provide an overview of what is known about evolution of the hominoid vertebral column, focusing on the currently available anatomical evidence of three major transitions: tail loss and adaptations to orthograde posture and bipedal locomotion.  相似文献   

17.
Models of rheumatoid arthritis (RA) in laboratory animals are important tools for research into pathogenic mechanisms and the development of effective, safe therapies. Rodent models (rats and mice) have provided important information about the pathogenic mechanisms. However, the evolutionary distance between rodents and humans hampers the translation of scientific principles into effective therapies. The impact of the genetic distance between the species is especially seen with treatments based on biological molecules, which are usually species-specific. The outbred nature and the closer anatomical, genetic, microbiological, physiological, and immunological similarity of nonhuman primates to humans may help to bridge the wide gap between inbred rodent strain models and the heterogeneous RA patient population. Here we review clinical, immunological and pathological aspects of the rhesus monkey model of collagen-induced arthritis, which has emerged as a reproducible model of human RA in nonhuman primates.  相似文献   

18.
狄林楠  李新蓉  宋楠 《植物研究》2018,38(5):725-732
为了揭示裸果木的遗传多样性和遗传结构,采用SCoT分子标记对新疆7个裸果木自然种群201个植株进行分析。结果表明12条引物共扩增出145个位点,在物种和种群水平上裸果木多态位点百分率分别为97.24%和76.45%,Nei's遗传多样性指数分别为0.263 8和0.213 7,Shannon's信息多样性指数分别为0.408 1和0.331 6,说明裸果木具有较高的遗传多样性,且物种水平遗传多样性略高于种群水平;遗传分化系数为0.183 9,说明其遗传变异主要来自种群内,种群间存在一定程度的分化;Mantel检验结果表明裸果木种群地理距离与遗传距离不存在显著相关性;运用主坐标分析(PCoA)和STRUCTURE分析对裸果木个体间亲缘关系聚类分析的结果存在一定差异,但总体上结果是一致的。裸果木的遗传多样性和遗传结构可能与进化历史、繁育系统、地理隔离和人为干扰有关。  相似文献   

19.
Current fossil, genetic, and archeological data indicate that Homo sapiens originated in Africa in the late Middle Pleistocene. By the end of the Late Pleistocene, our species was distributed across every continent except Antarctica, setting the foundations for the subsequent demographic and cultural changes of the Holocene. The intervening processes remain intensely debated and a key theme in hominin evolutionary studies. We review archeological, fossil, environmental, and genetic data to evaluate the current state of knowledge on the dispersal of Homo sapiens out of Africa. The emerging picture of the dispersal process suggests dynamic behavioral variability, complex interactions between populations, and an intricate genetic and cultural legacy. This evolutionary and historical complexity challenges simple narratives and suggests that hybrid models and the testing of explicit hypotheses are required to understand the expansion of Homo sapiens into Eurasia.  相似文献   

20.
Molecular distance and divergence time in carnivores and primates   总被引:10,自引:1,他引:9  
Numerous studies have used indices of genetic distance between species to reconstruct evolutionary relationships and to estimate divergence time. However, the empirical relationship between molecular-based indices of genetic divergence and divergence time based on the fossil record is poorly known. To date, the results of empirical studies conflict and are difficult to compare because they differ widely in their choice of taxa, genetic techniques, or methods for calibrating rates of molecular evolution. We use a single methodology to analyze the relationship of molecular distance and divergence time in 86 taxa (72 carnivores and 14 primates). These taxa have divergence times of 0.01-55 Myr and provide a graded series of phylogenetic divergences such that the shape of the curve relating genetic distance and divergence time is often well defined. The techniques used to obtain genetic distance estimates include one- and two-dimensional protein electrophoresis, DNA hybridization, and microcomplement fixation. Our results suggest that estimates of molecular distance and divergence time are highly correlated. However, rates of molecular evolution are not constant; rather, in general they decline with increasing divergence time in a linear fashion. The rate of decline may differ according to technique and taxa. Moreover, in some cases the variability in evolutionary rates changes with increasing divergence time such that the accuracy of nodes in a phylogenetic tree varies predictably with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号