首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interactions between species are important catalysts of the evolutionary processes that generate the remarkable diversity of life. Symbioses, conspicuous and inherently interesting forms of species interaction, are pervasive throughout the tree of life. However, nearly all studies of the impact of species interactions on diversification have concentrated on competition and predation leaving unclear the importance of symbiotic interaction. Here, I show that, as predicted by evolutionary theories of symbiosis and diversification, multiple origins of a key innovation, symbiosis between gall-inducing insects and fungi, catalysed both expansion in resource use (niche expansion) and diversification. Symbiotic lineages have undergone a more than sevenfold expansion in the range of host-plant taxa they use relative to lineages without such fungal symbionts, as defined by the genetic distance between host plants. Furthermore, symbiotic gall-inducing insects are more than 17 times as diverse as their non-symbiotic relatives. These results demonstrate that the evolution of symbiotic interaction leads to niche expansion, which in turn catalyses diversification.  相似文献   

2.
The diversification of gall-inducing Australian Kladothrips (Insecta: Thysanoptera) on Acacia has produced a pair of sister-clades, each of which includes a suite of lineages that utilize virtually the same set of 15 closely related host plant species. This pattern of parallel insect-host plant radiation may be driven by cospeciation, host-shifting to the same set of host plants, or some combination of these processes. We used molecular-phylogenetic data on the two gall-thrips clades to analyze the degree of concordance between their phylogenies, which is indicative of parallel divergence. Analyses of phylogenetic concordance indicate statistically-significant similarity between the two clades. Their topologies also fit with a hypothesis of some degree of host-plant tracking. Based on phylogenetic and taxonomic information regarding the phylogeny of the Acacia host plants in each clade, one or more species has apparently shifted to more-divergent Acacia host-plant species, and in each case these shifts have resulted in notable divergence in aspects of the phenotype including morphology, life history and behaviour. Our analyses indicate that gall-thrips on Australian Acacia have undergone parallel diversification as a result of some combination of cospeciation, highly restricted host-plant shifting, or both processes, but that the evolution of novel phenotypic diversity in this group is a function of relatively few shifts to divergent host plants. This combination of ecologically restricted and divergent radiation may represent a microcosm for the macroevolution of host plant relationships and phenotypic diversity among other phytophagous insects.  相似文献   

3.
Plant species diversity maintains the stability of ecosystems and the diversity of consumer species such as insect herbivores. Considering that gall-inducing insects are highly specialized on their host plants and dependent on the occurrence, abundance and distribution of plants, we evaluated the diversity patterns of gall-inducing insect along Brazilian Neotropical savannas and the potential role of plant species richness, vegetation structure and super-host presence on determining these patterns. We found 1,882 individual plants that belonged to 64 different host plant species grouped in 31 families, associated to 112 galling insect species. The galling richness was positively influenced by plant species richness and the presence of the super-host genus Qualea (Vochysiaceae). Plant species richness explained 48 % of the galling richness and areas with presence of super-hosts had more than twice of galling species than areas where they were absent. On the other hand, we found no evidence that larger plants hosted more species of galling insects. We observed that for the diversity of galling insects in the Brazilian Cerrado, vegetation structure explained almost the same portion as plant richness, because structural variables did not have an effect on residuals of galling richness and plant richness regression. Our findings suggests that plant richness has a more important role on the mitigation of natural enemies and adaptive radiation of galling species, while structural aspects of the vegetation does not seem to have that effect. Furthermore, we show that the super-host taxa provide an increment in local galling richness because they present a great diversity of local number of gall morphospecies (i.e. alpha diversity) and the high turnover of morphospecies among different localities (i.e. beta diversity). Therefore we argue that the quality of resources (richness and super host presence) appears to be a most important factor for the diversity of galling insects in Neotropical systems, than the amount of resources.  相似文献   

4.

For insect herbivores, a critical niche requirement—possibly the critical niche requirement—is the presence of suitable host plants. Current research suggests that non-native plants are not as suitable as native plants for native herbivores, resulting in decreases in insect abundance and richness on non-native plants. Like herbivores, gall-forming insects engage in complex, species-specific interactions with host plants. Galls are plant tissue tumors (including bulbous or spindle-shaped protrusions on leaves, stems and other plant organs) that are induced by insects through physical or chemical damage (prompting plants to grow a protective tissue shell around the insect eggs and larvae). As such, we hypothesized that gall-inducing insect species richness would be higher on native than non-native plants. We also predicted higher gall-inducing insect species richness on woody than herbaceous plants. We used an extensive literature review in which we compiled gall host plant species by genus, and we assigned native or non-native (or mixed) status to each genus. We found that native plants host far more gall-inducing insect species than non-native plants; woody plants host more gall-inducing species than herbaceous plants; and native woody plants host the most gall-inducing species of all. Gall-inducing species generally are a very cryptic group, even for experts, and hence do not elicit the conservation efforts of more charismatic insects such as plant pollinators. Our results suggest that non-native plants, particularly non-native woody species, diminish suitable habitat for gall-inducing species in parallel with similar results found for other herbivores, such as Lepidopterans. Hence, the landscape-level replacement of native with non-native species, particularly woody ones, degrades taxonomically diverse gall-inducing species (and their inquilines and parasitoids), removing multiple layers of diversity from forest ecosystems.

  相似文献   

5.
Phytophagous insects frequently use multiple host-plant species leading to the evolution of specialized host-adapted populations and sometimes eventually to speciation. Some insects are confronted with a large number of host-plant species, which may provide complex routes of gene flow between host-adapted populations. The pea aphid (Acyrthosiphon pisum) attacks a broad range of plants in the Fabaceae and it is known that populations on Trifolium pratense and Medicago sativa can be highly specialized at exploiting these species. To find out whether adaptation to a broad range of co-occurring hosts has occurred, we tested the performance of pea aphid clones collected from eight host-plant genera on all of these plants in a reciprocal transfer experiment. We provide evidence for pervasive host-plant specialization. The high performance of all aphid clones on Vicia faba suggests that this host plant could be a site of gene flow between different populations that could limit further host-associated divergence. The genetic variance in host-plant usage was partitioned into within- and among-population components, which represent different levels of host adaptation. Little evidence of within-population trade-offs in performance on different plant species was found.  相似文献   

6.
Gall insects can avoid and alter indirect plant defenses   总被引:2,自引:1,他引:1  
Parasitic species can dramatically alter host traits. Some of these parasite-induced changes can be considered adaptive manipulations that benefit the parasites. Gall-inducing insects are parasites well known for their ability to alter host-plant morphology and physiology, including the distribution of plant defensive compounds. Here it was investigated whether gall-inducing species alter indirect plant defenses, involving the release of volatile compounds that are attractive to foraging natural enemies. Using field and factorial laboratory experiments, volatile production by goldenrod (Solidago altissima) plants was examined in response to attack by two gall-inducing species, the tephritid fly Eurosta solidaginis and the gelechiid moth Gnorimoschema gallaesolidaginis, as well as the meadow spittlebug, Philaenus spumarius, and the generalist caterpillar Heliothis virescens. Heliothis virescens elicited strong indirect defensive responses from S. altissima, but the gall-inducing species and spittlebugs did not. More significantly, infestation by E. solidaginis appeared to suppress volatile responses to subsequent attack by the generalist caterpillar. The extensive control that E. solidaginis apparently exerts over host-plant defense responses may reduce the predation risk for the gall inducer and the subsequent herbivore, and could influence community-level dynamics, including the distribution of herbivorous insect species associated with S. altissima parasitized by E. solidaginis.  相似文献   

7.
致瘿昆虫对寄主植物生理和代谢的影响   总被引:1,自引:0,他引:1  
虫瘿是致瘿昆虫刺激植物后诱导形成的畸形结构,是研究植物与昆虫协同进化的理想材料,同时致瘿昆虫通常还是重要的农林害虫。因此,研究致瘿昆虫对寄主植物的影响,一方面可进一步揭示致瘿昆虫与植物的关系,有助于揭示成瘿植物生长的一般过程;另一方面,了解成瘿植物对致瘿昆虫的响应有助于筛选植物抗性指标、抗性基因、敏感基因等,为抗性育种提供理论基础。本文主要围绕致瘿昆虫对寄主植物光合作用、生理和代谢活动的影响等进行了综述。致瘿昆虫普遍引起寄主植物光合色素减少、光合速率降低,虫瘿内部组织中糖类、氨基酸类等初生代谢物质含量增加,虫瘿外部组织中酚类、黄酮类等非挥发性和萜类为主的挥发性次生代谢物质含量增加,寄主植物POD和SOD等保护酶活性增强,以及IAA, SA和JA等植物激素含量提高。现有研究资料显示,致瘿昆虫对寄主植物生理和代谢影响的研究仍处于初级阶段,其影响机制还需要进一步研究。  相似文献   

8.
Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed.  相似文献   

9.
Tropical herbivorous insects are astonishingly diverse, and many are highly host‐specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host‐specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent‐wide analyses reveal – in all but one instance – that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use.  相似文献   

10.
The origin of species-rich insect-plant food webs has traditionally been explained by diversifying antagonistic coevolution between plant defences and herbivore counter-defences. However, recent studies combining paleoclimatic reconstructions with time-calibrated phylogenies suggest that variation in global climate determines the distribution, abundance and diversity of plant clades and, hence, indirectly influences the balance between speciation and extinction in associated herbivore groups. Extant insect communities tend to be richest on common plant species that have many close relatives. This could be explained either by climate-driven diffuse cospeciation between plants and insects, or by elevated speciation and reduced extinction in herbivore lineages associated with expanding host taxa (resources). Progress in paleovegetation reconstructions in combination with the rapidly increasing availability of fossil-calibrated phylogenies provide means to discern between these alternative hypotheses. In particular, the 'Diffuse cospeciation' scenario predicts closely matching main diversification periods in plants and in the insects that feed upon them, while the 'Resource abundance-dependent diversification' hypothesis predicts that both positive and negative responses of insect diversity are lagged in relation to host-plant availability. The dramatic Cenozoic changes in global climate provide multiple possibilities for studying the mechanisms by which climatic shifts may drive diversity dynamics in plants and insect herbivores.  相似文献   

11.
Gall wasps (Cynipidae) represent the most spectacular radiation of gall-inducing insects. In addition to true gall formers, gall wasps also include phytophagous inquilines, which live inside the galls induced by gall wasps or other insects. Here we present the first comprehensive molecular and total-evidence analyses of higher-level gall wasp relationships. We studied more than 100 taxa representing a rich selection of outgroups and the majority of described cynipid genera outside the diverse oak gall wasps (Cynipini), which were more sparsely sampled. About 5 kb of nucleotide data from one mitochondrial (COI) and four nuclear (28S, LWRh, EF1alpha F1, and EF1alpha F2) markers were analyzed separately and in combination with morphological and life-history data. According to previous morphology-based studies, gall wasps evolved in the Northern Hemisphere and were initially herb gallers. Inquilines originated once from gall inducers that lost the ability to initiate galls. Our results, albeit not conclusive, suggest a different scenario. The first gall wasps were more likely associated with woody host plants, and there must have been multiple origins of gall inducers, inquilines or both. One possibility is that gall inducers arose independently from inquilines in several lineages. Except for these surprising results, our analyses are largely consistent with previous studies. They confirm that gall wasps are conservative in their host-plant preferences, and that herb-galling lineages have radiated repeatedly onto the same set of unrelated host plants. We propose a revised classification of the family into twelve tribes, which are strongly supported as monophyletic across independent datasets. Four are new: Aulacideini, Phanacidini, Diastrophini and Ceroptresini. We present a key to the tribes and discuss their morphological and biological diversity. Until the relationships among the tribes are resolved, the origin and early evolution of gall wasps will remain elusive.  相似文献   

12.
《新西兰生态学杂志》2011,28(2):215-224
The grass genus Chionochloa in New Zealand exhibits a high degree of mast seeding synchronised across species and habitats. Masting appears to be maintained by a predator satiation mechanism involving three pre-dispersal seed- and flower-feeding insects. It is not clear how important each of the three insects is in favouring the masting strategy. An undescribed cecidomyiid fly (Diptera: Cecidomyiidae) may be particularly important, since its conspicuous larvae are found throughout the South Island of New Zealand on many Chinochloa species. Despite the wide distribution of the larvae, it is not clear whether they are conspecific. Since the species is undescribed and adults are rarely seen, there may be different species on different host plants or in different geographic areas. We used Inter Simple Sequence Repeats (ISSRs) to determine whether cecidomyiid larvae found in four different areas in the South Island and on four species of Chionochloa exhibited molecular variation consistent with the presence of a single species of fly. Cluster analysis using Unweighted Pair-Group Method using Arithmetic averages (UPGMA) based on 38 ISSR fragments showed no clusters based on either host plant or geography. Analyis of Molecular Variance (AMOVA) analyses showed statistically significant differentiation among both host populations and geographic populations, but most of the molecular variation was explained by individual variation within geographic regions and host-plant populations. Thus, the molecular variation in the cecidomyiid larvae suggests the presence of a single species of cecidomyiid. Our data, combined with previous population surveys, suggest that the cecidomyiid is the most widespread of Chionochloa seed predators and may provide the selective benefit for the synchronous flowering observed among different Chionochloa populations in New Zealand.  相似文献   

13.
Genetic diversity was examined at 17 putative allozyme loci in 18 populations of the insular endemic plant Aster miyagii (Asteraceae). This species is geographically restricted to only three islands of the Ryukyu Islands and is on the federal list of threatened plants. Genetic differentiation within an island is small, suggesting that gene flow among populations on the same island is sufficiently large to prevent divergence. By contrast, genetic differentiation among islands is large, especially between Amamioshima Island and the other two islands, suggesting that gene flow between the islands is highly restricted. Two unique alleles are nearly fixed in populations on Amamioshima Island, which is the southernmost island of the three. Comparatively, genetic diversity is the smallest on Amamioshima Island. This genetic paucity on Amamioshima Island is probably a result of a population bottleneck at colonization or the small effective population size on this island. Genetic diversity at the species level of A. miyagii is larger than those of the species with a similar life history and of the congeneric widespread species, suggesting that the species has an old origin as an insular endemic species.  相似文献   

14.
The fruit fly Tephritis bardanae infests flower heads of two burdock hosts, Arctium tomentosum and A. minus. Observations suggest host-associated mating and behavioural differences at oviposition indicating host-race status. Previously, flies from each host plant were found to differ slightly in allozyme allele frequencies, but these differences could as well be explained by geographical separation of host plants. In the present study, we explicitly test whether genetic and morphological variance among T. bardanae are explained best by host-plant association or by geographical location, and if this pattern is stable over a 10-year period. Populations of A. tomentosum flies differed significantly from those of A. minus flies in (i) allozyme allele frequencies at the loci Pep-A and Pgd, (ii) mtDNA haplotype frequencies and (iii) wing size. In contrast, geographical location had no significant influence on the variance estimates. While it remains uncertain whether morphometric differentiation reflects genotypic variability or phenotypic plasticity, allozyme and mtDNA differentiation is genetically determined. This provides strong evidence for host-race formation in T. bardanae. However, the levels of differentiation are relatively low indicating that the system is in an early stage of divergence. This might be due to a lack of time (i.e. the host shift occurred recently) or due to relatively high gene flow preventing much differentiation at loci not experiencing selection.  相似文献   

15.
Host-race formation remains controversial as a source of herbivorous insect diversity, and examples of host races are still fairly scarce. In this study, analysis of five enzyme loci in the ostensibly generalist tumbling flower beetle Mordellistena convicta (Coleoptera: Mordellidae) revealed hidden host-plant and plant-organ related genetic differentiation. Mordellistena convicta turned out to be a complex of cryptomorphic species, each with fewer hosts than the nominal species. These cryptic species, in turn, were divided into taxa that showed host-race characteristics: samples from different host plants and organs exhibited (1) genetic indications of partial reproductive isolation, (2) differences in size and emergence timing that suggested divergent host-related selection, and (3) among-host selective differences in mortality from parasitoids. Host-race formation in M. convicta, which has a somewhat different life history from the well-studied host races, enlarges the group of insects considered likely to undergo this process. The widespread sympatry of the M. convicta species complex, along with its spectrum of host-correlated genetic differentiation, suggests that these host specialist taxa developed in sympatry.  相似文献   

16.
Speciation of plant-feeding insects is typically associated with host-plant shifts, with subsequent divergent selection and adaptation to the ecological conditions associated with the new plant. However, a few insect groups have apparently undergone speciation while remaining on the same host-plant species, and such radiations may provide novel insights into the causes of adaptive radiation. We used mitochondrial and nuclear DNA to infer a phylogeny for 14 species of gall-inducing Asphondylia flies (Diptera: Cecidomyiidae) found on Larrea tridentata (creosote bush), which have been considered to be monophyletic based on morphological evidence. Our phylogenetic analyses provide strong support for extensive within-host plant speciation in this group, and it demonstrates that diversification has involved numerous shifts between different plant organs (leaves, buds, flowers, and stems) of the same host-plant species. Within-plant speciation of Asphondylia is thus apparently facilitated by the opportunity to partition the plant ecologically. One clade exhibits temporal isolation among species, which may have facilitated divergence via allochronic shifts. Using a novel method based on Bayesian reconstruction, we show that the rate of change in an ecomorphological trait, ovipositor length, was significantly higher along branches with inferred shifts between host-plant organs than along branches without such shifts. This finding suggests that Larrea gall midges exhibit close morphological adaptation to specific host-plant parts, which may mediate ecological transitions via disruptive selection.  相似文献   

17.
The present study is the first to consider human and nonhuman consumers together to reveal several general patterns of plant utilization. We provide evidence that at a global scale, plant apparency and phylogenetic isolation can be important predictors of plant utilization and consumer diversity. Using the number of species or genera or the distribution area of each plant family as the island “area” and the minimum phylogenetic distance to common plant families as the island “distance”, we fitted presence–area relationships and presence–distance relationships with a binomial GLM (generalized linear model) with a logit link. The presence–absence of consumers among each plant family strongly depended on plant apparency (family size and distribution area); the diversity of consumers increased with plant apparency but decreased with phylogenetic isolation. When consumers extended their host breadth, unapparent plants became more likely to be used. Common uses occurred more often on common plants and their relatives, showing higher host phylogenetic clustering than uncommon uses. On the contrary, highly specialized uses might be related to the rarity of plant chemicals and were therefore very species‐specific. In summary, our results provide a global illustration of plant–consumer combinations and reveal several general patterns of plant utilization across humans, insects and microbes. First, plant apparency and plant phylogenetic isolation generally govern plant utilization value, with uncommon and isolated plants suffering fewer parasites. Second, extension of the breadth of utilized hosts helps explain the presence of consumers on unapparent plants. Finally, the phylogenetic clustering structure of host plants is different between common uses and uncommon uses. The strength of such consistent plant utilization patterns across a diverse set of usage types suggests that the persistence and accumulation of consumer diversity and use value for plant species are determined by similar ecological and evolutionary processes.  相似文献   

18.
The Bonin Islands are endowed with endemic species. However, these species are at risk of extinction because of the exuberance of invasive alien plants. Therefore, native plant species should be revegetated after eradicating alien plants. We investigated the genetic variation of Terminalia catappa populations in the Bonin Islands by using nuclear (n) microsatellites (simple sequence repeats [SSRs]) and chloroplast (cp) DNA. No significant differences were observed in the genetic diversity of nSSRs among 22 populations. However, recent bottlenecks were detected in three populations on the Chichijima Island group. nSSR variation and cpDNA haplotypes suggested the presence of two genetically distinct groups in the Mukojima and Chichijima Island groups and the Hahajima Island group. A similar genetic structure was observed in plants and animals in the Bonin Islands. Populations on the three islands, which were separated from other islands in each island group when the water depth was 50‐m lower than the present level, were dominated by unique nSSRs clusters, suggesting that historical changes in island connections during the Pleistocene era affected genetic substructuring. These results suggested that different factors contributed to the genetic structure of T. catappa on different geographic scales. At the whole‐island level, the genetic structure was determined by long‐distance seed dispersal by ocean currents. At the island‐group level, the genetic structure was determined by historical changes in island connections caused by changes in the sea level due to glacial–interglacial transition. These findings would help in establishing transplantation zone borders for revegetating T. catappa on the Bonin Islands.  相似文献   

19.
1. All else being equal, the greater the local species richness of plants, the greater the number of associated herbivore species. Because most herbivore insects feed on a subset of closely related plant species, plant phylogenetic diversity is expected to play a key role in determining the number of herbivore species. What is not well known, however, is how an increase in the species richness of exotic plants affects the species richness of herbivores. 2. In this study, we used plant–fruit fly interactions to investigate the influence of the proportion and species richness of exotic host plants on the species richness of herbivorous insects. We also tested whether the phylogenetic diversity of host plants increases when the number of exotic plant species increases. 3. We found that the species richness of fruit flies is more accurately predicted by the richness of native host plants than by total plant species richness (including both native and exotic species). The proportion of exotic host species and the phylogenetic diversity of host plants had negative and positive effects, respectively, on the species richness of fruit flies. 4. Our findings suggest that a positive effect of plant richness on herbivore richness occurs only when an increase in plant diversity involves plant species with which native herbivores share some evolutionary history.  相似文献   

20.
We used comparative methods that account for the phylogenetic correlations among species to test hypotheses about the community of gall-inducing insects on dicotyledonous and monocotyledonous plants and woody and herbaceous angiosperms in the UK. We found that the species richness of gall-inducing insects on dicots was greater than on monocots and that the odds of a dicot having an associated gall-inducing insect is 42% higher than for a monocot. Woody angiosperms have higher species richness of associated gall-inducing insects than do herbaceous angiosperms. Furthermore, using a Monte Carlo analysis we found that attacks by gall-inducing insects on monocot families were phylogenetically clustered in the order Poales, particularly within the grass family Poaceae. We suggest that the higher risk of attack on dicots and higher species richness of gall-inducing insects on woody angiosperms, which are exclusively dicots, arises because of differences in the abundance or susceptibility of dicot meristems to attack by gall-inducing insects. Architectural and anatomical differences between monocots and dicots that give rise to differences in meristem abundance and anatomy appear to play an important role in determining the occurrence and richness of associated gall-inducing insects on host plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号