首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Grazing is recognized as one of the selective factors shaping the morphology and physiology of cyanobacteria. A recent study has shown that the filamentous cyanobacterium Aphanizomenon gracile strain SAG 31.79 thickened in the presence of Daphnia (Cladocera) and its exudates. The aims of our study were: (1) to determine whether this type of response to Daphnia cues is common for other strains of A. gracile, and other species of filamentous cyanobacteria, (2) to test whether the response is due to nutrients recycled by Daphnia, or kairomone induced, and (3) whether it is related to toxin production. Prior to the experiment, cyanobacterial strains were inspected using chromatographic methods for the presence of two toxins, cylindrospermopsin (CYN) and three homologues of microcystin (MC-RR, MC-YR, MC-LR). HPLC analyses showed that all strains were free of cylindrospermopsin, whereas microcystins were detected only in one strain (Planktothrix agardhii). We then tested whether Daphnia exudates can cause thickening of cyanobacterial filaments, which would suggest the morphological changes in cyanobacterial filaments are caused by recycled nutrients. Cyanobacteria were also exposed to sodium octyl sulphate (a commercially available Daphnia kairomone). Transmission electron microscopy (TEM) was used to check whether Daphnia exudates and sodium octyl sulphate trigger thickening of cyanobacterial cell walls, which would be a defence mechanism against grazing. The TEM analysis revealed no significant effect of either Daphnia exudates or kairomone (sodium octyl sulphate) on the cell wall thickness of cyanobacteria. However, our study showed that Daphnia exudates triggered filament thickening in nostocalean cyanobacteria, while filaments of the oscillatorialean strain P. agardhii did not show this response. It was also demonstrated that sodium octyl sulphate alone can also cause filament thickening, which suggests that this might be a specific defence response to the presence of grazers.  相似文献   

2.
1. Published studies show that cyanobacteria have higher Fe requirements than eukaryotic algae. To test whether Fe availability can affect formation of a cyanobacterial bloom, a strong Fe chelator, oxine (8‐hydroxyquinoline, C9H7NO), was added to enclosures in eutrophic Lake 227 in the Experimental Lakes Area (ELA) (northwestern Ontario). 2. Aphanizomenon schindlerii growth was suppressed, and growth of eukaryotic chlorophytes significantly promoted in enclosures to which oxine had been added. Significant eukaryotic growth did not occur in enclosures treated with ammonium, suggesting that N supplied by degradation of oxine was not responsible for eukaryotic success in the oxine enclosures. 3. In situ Fe2+ measurements were unreliable because of interference from high concentrations of dissolved organic compounds. However, oxine rapidly promoted oxidation of Fe2+ to Fe3+ in deionised water, suggesting that rapid removal of Fe2+ also occurred in the oxine‐treated enclosures. 4. In batch cultures, 10 μm Fe and 10 μm oxine (a 1 : 1 ratio) completely inhibited the growth of the cyanobacteria Synechococcus sp. and Anabaena flos‐aquae and the chlorophytes Pseudokirchneriella subcapitata and Scenedesmus quadricauda. Increasing Fe 10‐fold to 100 μm Fe completely and partially reversed oxine inhibition in the two chlorophytes but could not overcome inhibition of the cyanobacteria, indicating that inhibition was Fe‐mediated at least in the eukaryotes. Since oxine binds Fe3+ in a 1 : 3 ratio (Fe : oxine), inhibition at a 1 : 1 ratio indicates that not all of the Fe is bound, and a mechanism involving Fe other than chelation was at least partly responsible for inhibition. 5. Collectively, the enclosure and laboratory results suggest that the outcome of competition between cyanobacteria and eukaryotic algae in the oxine‐treated enclosures in Lake 227 was likely a result of decreased availability of Fe, especially Fe2+. 6. The results suggest that remediation methods that dramatically restrict the supply rate of Fe2+ could reduce the relative abundance of cyanobacteria in eutrophic systems.  相似文献   

3.

Responses of phytoplankton biomass were monitored in pelagic enclosures subjected to manipulations with nutrients (+N/P), planktivore roach (Rutilus rutilus) and large grazers (Daphnia) in 18 bags during spring, summer and autumn in mesotrophic Lake Gjersjøen. In general, the seasonal effects on phytoplankton biomass were more marked than the effects of biomanipulation. Primary top-down effects of fish on zooplankton were conspicuous in all bags, whereas control of phytoplankton growth by grazing was observed only in the nutrient-limited summer situation. The effect of nutrient additions was pronounced in summer, less in spring and autumn; additions of fish gave the most pronounced effect in spring. The phytoplankton/zooplankton biomass ratio remained high (10–100) in bags with fish, with the highest ratios in combination with fertilization. The ratio decreased in bags without fish to<2 in most bags, but a real grazing control was only observed in bags with addition ofDaphnia. No direct grazing effects could be observed on the absolute or relative biomass of cyanobacteria (mainlyOscillatoria agardhii). The share of cyanobacteria in total phytoplankton biomass was lowest in summer (7–26%), higher in spring (39–63%) and more than 90% in the autumn experiment. The development of the cyanobacterial biomass was rather synchronous in all bags in all the three experiments. A high biomass ofDaphnia gave no increase in the pool of dissolved nutrients in spring, a slight increase in summer and a pronounced increase in autumn. While a strong decrease in the P/C-cell quota of the phytoplankton was observed from spring to autumn, no effect of grazing or nutrient release could be related to this P/C-status. The experiments indicate that such systems, with high and stable densities of inedible cyanobacteria, are rather insensitive to short-term (3–4 weeks) biomanipulation efforts. This is supported by observations on the long-term development of the lake.

  相似文献   

4.
We hypothesize that the pattern of cyanobacterial dominance in experimentally enriched, low-carbon lakes is related not only to the resultant N:P ratio but also to the availability of carbon for gas-vesicle synthesis. We tested this hypothesis by determining the buoyancy responses of a highly gas-vacuolate, N2-fixing cyanobacterium to P enrichment with and without induced C limitation. Enrichment of samples of Aphanizomenon schindleri (Kling et al. 1994) from blooms in Lake 227 with combinations of C, N, and P produced rapid buoyancy reductions in P treatments, reductions that were reversed within a generation time in treatments that included C or C and N as well as P. These responses are the first of their kind to be observed in experiments with lake populations of cyano-bacteria. The rapid buoyancy reductions were associated with polyphosphate accumulations in P-treated A. schindleri. Differences in buoyancy status after one generation time were linked to differences in relative gas vacuolation between samples treated with P only and samples treated with C and N as well as P. These results may explain the relative success of different types of cyanobacteria in newly enriched, low-carbon lakes. The availability of C for gasvesicle synthesis may determine whether a low N:P ratio induces N2 fixation by benthic or by planktonic cyanobacteria and whether a high NP ratio leads to dominance by non-gas-vacuolate or by highly gas-vacuolate, non-N2-fixers.  相似文献   

5.
Forty-eight-hour experimental manipulations of zooplankton biomass were performed to examine the potential effects of zooplankton on nutrient availability and phytoplankton biomass (as measured by seston concentration) and C : N : P stoichiometry in eutrophic nearshore waters of Lake Biwa, Japan. Increasing zooplankton, both mixed-species communities and Daphnia alone, consistently reduced seston concentration, indicating that nearshore phytoplankton were generally edible. The zooplankton clearance rates of inshore phytoplankton were similar to rates measured previously for offshore phytoplankton. Increased zooplankton biomass led to increased concentrations of nutrients (NH4-N, soluble reactive phosphorus [SRP]). Net release rates were higher than those found in previous measurements made offshore, reflecting the nutrient-rich nature of inshore seston. Zooplankton nutrient recycling consistently decreased TIN : SRP ratios (TIN = NH4 + NO3 + NO2). This effect probably resulted from the low N : P ratios of nearshore seston, which were lower than those commonly found in crustacean zooplankton and thus resulted in low retention efficiency of P (relative to N) by the zooplankton. Thus, zooplankton grazing inshore may ameliorate algal blooms due to direct consumption but tends to create nutrient supply conditions with low N : P, potentially favoring cyanobacteria. In comparison with previous findings for offshore, it appears that potential zooplankton effects on phytoplankton and nutrient dynamics differ qualitatively in inshore and offshore regions of Lake Biwa. Received: September 4, 2000 / Accepted: January 23, 2001  相似文献   

6.
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.  相似文献   

7.
Lake restoration practices based on reducing fish predation and promoting the dominance of large-bodied Daphnia grazers (i.e., biomanipulation) have been the focus of much debate due to inconsistent success in suppressing harmful cyanobacterial blooms. While most studies have explored effects of large-bodied Daphnia on cyanobacterial growth at the community level and/or on few dominant species, predictions of such restoration practices demand further understanding on taxa-specific responses in diverse cyanobacterial communities. In order to address these questions, we conducted three grazing experiments during summer in a eutrophic lake where the natural phytoplankton community was exposed to an increasing gradient in biomass of the large-bodied Daphnia magna. This allowed evaluating taxa-specific responses of cyanobacteria to Daphnia grazing throughout the growing season in a desired biomanipulation scenario with limited fish predation. Total cyanobacterial and phytoplankton biomasses responded negatively to Daphnia grazing both in early and late summer, regardless of different cyanobacterial densities. Large-bodied Daphnia were capable of suppressing the abundance of Aphanizomenon, Dolichospermum, Microcystis and Planktothrix bloom-forming cyanobacteria. However, the growth of the filamentous Dolichospermum crassum was positively affected by grazing during a period when this cyanobacterium dominated the community. The eutrophic lake was subjected to biomanipulation since 2005 and nineteen years of lake monitoring data (1996–2014) revealed that reducing fish predation increased the mean abundance (50%) and body-size (20%) of Daphnia, as well as suppressed the total amount of nutrients and the growth of the dominant cyanobacterial taxa, Microcystis and Planktothrix. Altogether our results suggest that lake restoration practices solely based on grazer control by large-bodied Daphnia can be effective, but may not be sufficient to control the overgrowth of all cyanobacterial diversity. Although controlling harmful cyanobacterial blooms should preferably include other measures, such as nutrient reductions, our experimental assessment of taxa-specific cyanobacterial responses to large-bodied Daphnia and long-term monitoring data highlights the potential of such biomanipulations to enhance the ecological and societal value of eutrophic water bodies.  相似文献   

8.
The responses of nutrients, water transparency, zooplankton and phytoplankton to a gradient of silver carp biomass were assessed using enclosure methods. The gradient of four silver carp biomass levels was set as follows: 0, 116, 176 and 316 g m—2. Nutrients did not show any statistically significant differences among the treatments. An outburst of Daphnia only occurred in fishless enclosures where phytoplankton biomass was the lowest and water clarity significantly increased. While among fish enclosures, the small‐sized Moina micrura dominated throughout the experiment and both zooplankton and phytoplankton biomasses decreased with increased fish biomass. No large colonial cyanobacterial blooms occurred in the fishless enclosures as predicted. This might be due to low water temperature, short experiment time and the occurrence of large bodied Daphnia in our experiment. Cryptophyta was the most dominant group in most of the enclosures and the lake water throughout the experiment. The fishless enclosure had much lower proportion of Cyanophyta but higher proportion of Trachelomonas sp.  相似文献   

9.
Changes in the ecological stoichiometry of C, N, and P in the pelagic zone are reported from a whole-lake manipulation of the food web of Lake 227, an experimentally eutrophied lake at the Experimental Lakes Area, Canada. Addition of northern pike eliminated populations of planktivorous minnows by the third year (1995) after pike introduction, and in the fourth year after pike addition (1996), a massive increase in the abundance of the large-bodied cladoceran Daphnia pulicaria occurred. Accompanying this increase in Daphnia abundance, zooplankton community N:P declined, seston concentration and C:P ratio decreased, and dissolved N and P pools increased. During peak abundance, zooplankton biomass comprised a significant proportion of total epilimnetic phosphorus (greater than 30%). During the period of increased Daphnia abundance, concentrations of dissolved inorganic nitrogen (TIN) increased more strongly than dissolved phosphorus (TDP), and thus TIN:TDP ratios were elevated. Sedimentation data indicated that increased grazing led to greatly reduced residence times of C, N, and especially P in the water column during 1996. Finally, previously dominant N-fixing cyanobacteria were absent during 1996. Our results show that strong effects of food-web structure can occur in eutrophic lakes and that stoichiometric mechanisms play a potentially important role in generating these effects.  相似文献   

10.
Non-diazotrophic Microcystis and filamentous N2-fixing Aphanizomenon and Dolichospermum (formerly Anabaena) co-occur or successively dominate freshwaters globally. Previous studies indicate that dual nitrogen (N) and phosphorus (P) reduction is needed to control cyanobacterial blooms; however, N limitation may cause replacement of non-N2-fixing by N2-fixing taxa. To evaluate potentially counterproductive scenarios, the effects of temperature, nutrients, and zooplankton on the spatio-temporal variations of cyanobacteria were investigated in three large, shallow eutrophic lakes in China. The results illustrate that the community composition of cyanobacteria is primarily driven by physical factors and the zooplankton community, and their interactions. Niche differentiation between Microcystis and two N2-fixing taxa in Lake Taihu and Lake Chaohu was observed, whereas small temperature fluctuations in Lake Dianchi supported co-dominance. Through structural equation modelling, predictor variables were aggregated into ‘composites’ representing their combined effects on species-specific biomass. The model results showed that Microcystis biomass was affected by water temperature and P concentrations across the studied lakes. The biomass of two filamentous taxa, by contrast, exhibited lake-specific responses. Understanding of driving forces of the succession and competition among bloom-forming cyanobacteria will help to guide lake restoration in the context of climate warming and N:P stoichiometry imbalances.  相似文献   

11.
Consumer-dependent responses of lake ecosystems to nutrient loading   总被引:1,自引:0,他引:1  
The nutrient loading concept proposes that algal biomass, waterclarity and the processes of lake eutrophication are a functionof nutrient loading. We hypothesized that grazers play an importantrole in determining the impacts of nutrient loading on algalbiomass and water clarity, and the overall eutrophication process.To test how the contrasting grazer communities modify the fateof nutrients, we added nutrients (nitrate and phosphate) ata known loading rate to four large enclosures, but in two ofthe four enclosures large cladoceran grazers (Daphnia >1mm mean length) were allowed to develop by removing the planktivorousfish. In the remaining two enclosures, the development of largeDaphnia was prevented by adding planktivorous fish. The concentrationsof epilimnetic total phosphorus (TP) increased at a similarrate in all four enclosures. However, the daily accumulationof added phosphate into the participate or planktonic forms,especially into plankton <20 µm, was three times fasterwhen large Daphnia were absent than when large Daphnia wereabundant. In the enclosures with large Daphnia, added phosphatewas accumulated in the dissolved pool instead. At a constantnutrient loading, algal biomass (chlorophyll a) increased fourtimes faster in the enclosures without large Daphnia than inthose with large Daphnia. Similarly, Secchi depth declined from3.5 to <1 m when Daphnia were absent, but did not declinewhen Daphnia were common. Our results demonstrate that the samenutrient loading and the resultant increase in epilimnetic TPdo not produce the same trophic conditions, as indicated byalgal biomass and water clarity, if the grazers of the majorassimilators of nutrients (the fraction of plankton edible toDaphnia) are different. We suggest that stratified lake ecosystemshaving functionally dominant large grazer communities may beless prone to eutrophication than those lacking large grazers.Consistent with the nutrient loading concept, epilimnetic concentrationsof phosphorus increase proportionately with increased loadingof phosphorus, but the trophic conditions of ecosystems indicatedby algal biomass and water clarity do not follow the same patternsunder contrasting conditions of grazer communities. We suggestthat models predicting algal biomass from loading rates shouldaccount for the role of grazers.  相似文献   

12.
13.
The development of a filamentous, nitrogen-fixing cyanobacterial bloom was followed during July–August 1990 in a stratified basin in the central Gulf of Finland, Baltic Sea. Hydrography, dissolved inorganic, particulate and total nutrients, chlorophyll a, alkaline phosphatase activity, 32PO4-uptake and phytoplankton species were measured. The study period was characterized by wind-induced mixing events, followed by marked nutrient pulses and plankton community responses. Phosphate uptake was highest throughout the study period in the size fraction dominated by bacteria and picocyanobacteria (< 2 µm) and the proportion of uptake in the size fraction 2–10 µm remained low (2–6%). Higher phosphate turnover times were observed in a community showing signs of enhanced heterotrophic activity. The bloom of filamentous, nitrogen-fixing cyanobacteria Aphanizomenon flos-aquae was promoted by a nutrient pulse with an inorganic nutrient ratio (DIN:DIP) of 15. The results show that the quality, frequency and magnitude of the physically forced nutrient pulses have an important role in determining the relative share of the different modes of phosphorus utilization and hence in determining the cyanobacterial bloom intensity and species composition in the Baltic Sea.  相似文献   

14.
Daily integrals of photosynthesis by a cyanobacterial bloom in the Baltic Sea, during the summer of 1993, were calculated from the vertical distributions of light, temperature and the organisms in the water column and from photosynthesis/irradiance curves of picoplanktonic and diazotrophic cyanobacteria isolated from the community. The distribution of chlorophyll a in size-classes <20?µm and >20?µm was monitored over 9 days that included a deep mixing event followed by calm. Picocyanobacteria formed 70% of the cyanobacterial biomass and contributed 56% of the total primary production. Of the filamentous diazotrophs that formed the other 30%, Aphanizomenon contributed 28% and a Nodularia-containing fraction 16% of the primary production. For the whole population there was little change in standardized photosynthetic O2 production, which remained at about 31?mmol?m?2 before and after the mixing event. There were differences, however, between the classes of cyanobacteria: in picocyanobacteria primary production hardly changed, while in Aphanizomenon it increased by 2.6 and in Nodularia it fell below zero. Total phytoplankton photosynthesis was strongly dependent on total daily insolation with the compensation point at a photon insolation of 22.7?mol?m?2?d?1. Similar analyses of N2 fixation showed much less dependence on depth distribution of light and biomass: Aphanizomenon fixed about twice as much N2 as Nodularia their; their fixation exceeded their own N demand by about 12%. Together, these species contributed 49% of the total N demand of the phytoplankton population. Computer models based on the measured light attenuation and photosynthetic coefficients indicate that growth of the cyanobacterial population could occur only in the summer months when the critical depth of the cyanobacteria exceeds the depth of mixing.  相似文献   

15.
16.
New Zealand ephemeral wetlands are ecologically important, containing up to 12% of threatened native plant species and frequently exhibiting conspicuous cyanobacterial growth. In such environments, cyanobacteria and associated heterotrophs can influence primary production and nutrient cycling. Wetland communities, including bacteria, can be altered by increased nitrate and phosphate due to agricultural practices. We have characterized cyanobacteria from the Wairepo Kettleholes Conservation Area and their associated bacteria. Use of 16S rRNA amplicon sequencing identified several operational taxonomic units (OTUs) representing filamentous heterocystous and non‐heterocystous cyanobacterial taxa. One Nostoc OTU that formed macroscopic colonies dominated the cyanobacterial community. A diverse bacterial community was associated with the Nostoc colonies, including a core microbiome of 39 OTUs. Identity of the core microbiome associated with macroscopic Nostoc colonies was not changed by the addition of nutrients. One OTU was highly represented in all Nostoc colonies (27.6%–42.6% of reads) and phylogenetic analyses identified this OTU as belonging to the genus Sphingomonas. Scanning electron microscopy showed the absence of heterotrophic bacteria within the Nostoc colony but revealed a diverse community associated with the colonies on the external surface.  相似文献   

17.
Summary Four cyanobacterial inoculants all significantly increased grain and straw yield of rice either alone or in combination with chemical fertilizer. A saving of 25 kg N ha−1 can be attained through cyanobacterial fertilization. Tobacco waste-based cyanobacterial biofertilizer was best in performance. Cyanobacterial acetylene reducing activity in vivo varied from 144 to 255 μmol C2H4 m−2 h−1 in different treatments, being highest for tobacco-based cyanobacterial biofertilizer integrated with 50% chemical N. The nutrient balance for total N, available N, total P and available P was found positive in biofertilizer- and chemical fertilizer-treated plots. The total and available K showed negative balance in all the treatments. The shelf-life of cyanobacterial biofertilizer can be augmented by selecting translucent packing material, dry mixing and paddy straw as a carrier. Dry mixing and a mixing ratio of 50:50 (carrier:cyanobacteria) gave better inoculum loading and shelf-life. Decrease in cyanobacterial population was least in dried cyanobacterial flacks, indicating a possibility of developing cyanobacterial biofertilizer without carrier mixing at the time of production.  相似文献   

18.

Background  

The frequency of cyanobacterial blooms has increased worldwide, and these blooms have been claimed to be a major factor leading to the decline of the most important freshwater herbivores, i.e. representatives of the genus Daphnia. This suppression of Daphnia is partly attributed to the presence of biologically active secondary metabolites in cyanobacteria. Among these metabolites, protease inhibitors are found in almost every natural cyanobacterial bloom and have been shown to specifically inhibit Daphnia 's digestive proteases in vitro, but to date no physiological responses of these serine proteases to cyanobacterial protease inhibitors in Daphnia have been reported in situ at the protein and genetic levels.  相似文献   

19.
Many types of ecosystems have little or no N2 fixation even when nitrogen (N) is strongly limiting to primary production. Estuaries generally fit this pattern. In contrast to lakes, where blooms of N2-fixing cyanobacteria are often sufficient to alleviate N deficits relative to phosphorus (P) availability, planktonic N2 fixation is unimportant in most N-limited estuaries. Heterocystic cyanobacteria capable of N2 fixation are seldom observed in estuaries where the salinity exceeds 8–10 ppt, and blooms have never been reported in such estuaries in North America. However, we provided conditions in estuarine mesocosms (salinity over 27 ppt) that allowed heterocystic cyanobacteria to grow and fix N2 when zooplankton populations were kept low. Grazing by macrozooplankton at population densities encountered in estuaries strongly suppressed cyanobacterial populations and N2 fixation. The cyanobacteria grew more slowly than observed in fresh waters, at least in part due to the inhibitory effect of sulfate (SO4 2−), and this slow rate of growth increased their vulnerability to grazing. We conclude that interactions between physiological (bottom–up) factors that slow the growth rate of cyanobacteria and ecological (top–down) factors such as grazing are likely to be important regulators excluding planktonic N2 fixation from most Temperate Zone estuaries. Received 26 April 2002; Accepted 12 July 2002.  相似文献   

20.
Armitage AR  Fong P 《Oecologia》2004,139(4):560-567
We evaluated the effects of nutrient addition on interactions between the benthic microalgal community and a dominant herbivorous gastropod, Cerithidea californica (California horn snail), on tidal flats in Mugu Lagoon, southern California, USA. We crossed snail and nutrient (N and P) addition treatments in enclosures on two tidal flats varying from 71 to 92% sand content in a temporally replicated experiment (summer 2000, fall 2000, spring 2001). Diatom biomass increased slightly (~30%) in response to nutrient treatments but was not affected by snails. Blooms of cyanobacteria (up to 200%) and purple sulfur bacteria (up to 400%) occurred in response to nutrient enrichment, particularly in the sandier site, but only cyanobacterial biomass decreased in response to snail grazing. Snail mortality was 2–5 times higher in response to nutrient addition, especially in the sandier site, corresponding to a relative increase in cyanobacterial biomass. Nutrient-related snail mortality occurred only in the spring and summer, when the snails were most actively feeding on the microalgal community. Inactive snails in the fall showed no response to nutrient-induced cyanobacterial growths. This study demonstrated strongly negative upward cascading effects of nutrient enrichment through the food chain. The strength of this upward cascade was closely linked to sediment type and microalgal community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号