首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Economically important reproduction traits in sheep, such as number of lambs weaned and litter size, are expressed only in females and later in life after most selection decisions are made, which makes them ideal candidates for genomic selection. Accurate genomic predictions would lead to greater genetic gain for these traits by enabling accurate selection of young rams with high genetic merit. The aim of this study was to design and evaluate the accuracy of a genomic prediction method for female reproduction in sheep using daughter trait deviations (DTD) for sires and ewe phenotypes (when individual ewes were genotyped) for three reproduction traits: number of lambs born (NLB), litter size (LSIZE) and number of lambs weaned. Genomic best linear unbiased prediction (GBLUP), BayesR and pedigree BLUP analyses of the three reproduction traits measured on 5340 sheep (4503 ewes and 837 sires) with real and imputed genotypes for 510 174 SNPs were performed. The prediction of breeding values using both sire and ewe trait records was validated in Merino sheep. Prediction accuracy was evaluated by across sire family and random cross‐validations. Accuracies of genomic estimated breeding values (GEBVs) were assessed as the mean Pearson correlation adjusted by the accuracy of the input phenotypes. The addition of sire DTD into the prediction analysis resulted in higher accuracies compared with using only ewe records in genomic predictions or pedigree BLUP. Using GBLUP, the average accuracy based on the combined records (ewes and sire DTD) was 0.43 across traits, but the accuracies varied by trait and type of cross‐validations. The accuracies of GEBVs from random cross‐validations (range 0.17–0.61) were higher than were those from sire family cross‐validations (range 0.00–0.51). The GEBV accuracies of 0.41–0.54 for NLB and LSIZE based on the combined records were amongst the highest in the study. Although BayesR was not significantly different from GBLUP in prediction accuracy, it identified several candidate genes which are known to be associated with NLB and LSIZE. The approach provides a way to make use of all data available in genomic prediction for traits that have limited recording.  相似文献   

2.
Genotyping sheep for genome‐wide SNPs at lower density and imputing to a higher density would enable cost‐effective implementation of genomic selection, provided imputation was accurate enough. Here, we describe the design of a low‐density (12k) SNP chip and evaluate the accuracy of imputation from the 12k SNP genotypes to 50k SNP genotypes in the major Australian sheep breeds. In addition, the impact of imperfect imputation on genomic predictions was evaluated by comparing the accuracy of genomic predictions for 15 novel meat traits including carcass and meat quality and omega fatty acid traits in sheep, from 12k SNP genotypes, imputed 50k SNP genotypes and real 50k SNP genotypes. The 12k chip design included 12 223 SNPs with a high minor allele frequency that were selected with intermarker spacing of 50–475 kb. SNPs for parentage and horned or polled tests also were represented. Chromosome ends were enriched with SNPs to reduce edge effects on imputation. The imputation performance of the 12k SNP chip was evaluated using 50k SNP genotypes of 4642 animals from six breeds in three different scenarios: (1) within breed, (2) single breed from multibreed reference and (3) multibreed from a single‐breed reference. The highest imputation accuracies were found with scenario 2, whereas scenario 3 was the worst, as expected. Using scenario 2, the average imputation accuracy in Border Leicester, Polled Dorset, Merino, White Suffolk and crosses was 0.95, 0.95, 0.92, 0.91 and 0.93 respectively. Imputation scenario 2 was used to impute 50k genotypes for 10 396 animals with novel meat trait phenotypes to compare genomic prediction accuracy using genomic best linear unbiased prediction (GBLUP) with real and imputed 50k genotypes. The weighted mean imputation accuracy achieved was 0.92. The average accuracy of genomic estimated breeding values (GEBVs) based on only 12k data was 0.08 across traits and breeds, but accuracies varied widely. The mean GBLUP accuracies with imputed 50k data more than doubled to 0.21. Accuracies of genomic prediction were very similar for imputed and real 50k genotypes. There was no apparent impact on accuracy of GEBVs as a result of using imputed rather than real 50k genotypes, provided imputation accuracy was >90%.  相似文献   

3.

Background

Differences in linkage disequilibrium and in allele substitution effects of QTL (quantitative trait loci) may hinder genomic prediction across populations. Our objective was to develop a deterministic formula to estimate the accuracy of across-population genomic prediction, for which reference individuals and selection candidates are from different populations, and to investigate the impact of differences in allele substitution effects across populations and of the number of QTL underlying a trait on the accuracy.

Methods

A deterministic formula to estimate the accuracy of across-population genomic prediction was derived based on selection index theory. Moreover, accuracies were deterministically predicted using a formula based on population parameters and empirically calculated using simulated phenotypes and a GBLUP (genomic best linear unbiased prediction) model. Phenotypes of 1033 Holstein-Friesian, 105 Groninger White Headed and 147 Meuse-Rhine-Yssel cows were simulated by sampling 3000, 300, 30 or 3 QTL from the available high-density SNP (single nucleotide polymorphism) information of three chromosomes, assuming a correlation of 1.0, 0.8, 0.6, 0.4, or 0.2 between allele substitution effects across breeds. The simulated heritability was set to 0.95 to resemble the heritability of deregressed proofs of bulls.

Results

Accuracies estimated with the deterministic formula based on selection index theory were similar to empirical accuracies for all scenarios, while accuracies predicted with the formula based on population parameters overestimated empirical accuracies by ~25 to 30%. When the between-breed genetic correlation differed from 1, i.e. allele substitution effects differed across breeds, empirical and deterministic accuracies decreased in proportion to the genetic correlation. Using a multi-trait model, it was possible to accurately estimate the genetic correlation between the breeds based on phenotypes and high-density genotypes. The number of QTL underlying the simulated trait did not affect the accuracy.

Conclusions

The deterministic formula based on selection index theory estimated the accuracy of across-population genomic predictions well. The deterministic formula using population parameters overestimated the across-population genomic accuracy, but may still be useful because of its simplicity. Both formulas could accommodate for genetic correlations between populations lower than 1. The number of QTL underlying a trait did not affect the accuracy of across-population genomic prediction using a GBLUP method.  相似文献   

4.
Holstein Friesian cow training sets were created according to disease incidences. The different datasets were used to investigate the impact of random forest (RF) and genomic BLUP (GBLUP) methodology on genomic prediction accuracies. In addition, for further verifications of some specific scenarios, single‐step genomic BLUP was applied. Disease traits included the overall trait categories of (i) claw disorders, (ii) clinical mastitis and (iii) infertility from 80 741 first lactation Holstein cows kept in 58 large‐scale herds. A subset of 6744 cows was genotyped (50K SNP panel). Response variables for all scenarios were de‐regressed proofs (DRPs) and pre‐corrected phenotypes (PCPs). Initially, all sick cows were allocated to the testing set, and healthy cows represented the training set. For the ongoing cow allocation schemes, the number of sick cows in the training set increased stepwise by moving 10% of the sick cows from the testing to the training set in each step. The size of training and testing sets was kept constant by replacing the same number of cows in the testing set with (randomly selected) healthy cows from the training set. For both the RF and GBLUP methods, prediction accuracies were larger for DRPs compared to PCPs. For PCPs as a response variable, the largest prediction accuracies were observed when the disease incidences in training sets reflected the disease incidence in the whole population. A further increase in prediction accuracies for some selected cow allocation schemes (i.e. larger prediction accuracies compared to corresponding scenarios with RF or GBLUB) was achieved via single‐step GBLUP applications. Correlations between genome‐wide association study SNP effects and RF importance criteria for single SNPs were in a moderate range, from 0.42 to 0.57, when considering SNPs from all chromosomes or from specific chromosome segments. RF identified significant SNPs close to potential positional candidate genes: GAS1, GPAT3 and CYP2R1 for clinical mastitis; SPINK5 and SLC26A2 for laminitis; and FGF12 for endometritis.  相似文献   

5.

Background

Genomic selection is increasingly widely practised, particularly in dairy cattle. However, the accuracy of current predictions using GBLUP (genomic best linear unbiased prediction) decays rapidly across generations, and also as selection candidates become less related to the reference population. This is likely caused by the effects of causative mutations being dispersed across many SNPs (single nucleotide polymorphisms) that span large genomic intervals. In this paper, we hypothesise that the use of a nonlinear method (BayesR), combined with a multi-breed (Holstein/Jersey) reference population will map causative mutations with more precision than GBLUP and this, in turn, will increase the accuracy of genomic predictions for selection candidates that are less related to the reference animals.

Results

BayesR improved the across-breed prediction accuracy for Australian Red dairy cattle for five milk yield and composition traits by an average of 7% over the GBLUP approach (Australian Red animals were not included in the reference population). Using the multi-breed reference population with BayesR improved accuracy of prediction in Australian Red cattle by 2 – 5% compared to using BayesR with a single breed reference population. Inclusion of 8478 Holstein and 3917 Jersey cows in the reference population improved accuracy of predictions for these breeds by 4 and 5%. However, predictions for Holstein and Jersey cattle were similar using within-breed and multi-breed reference populations. We propose that the improvement in across-breed prediction achieved by BayesR with the multi-breed reference population is due to more precise mapping of quantitative trait loci (QTL), which was demonstrated for several regions. New candidate genes with functional links to milk synthesis were identified using differential gene expression in the mammary gland.

Conclusions

QTL detection and genomic prediction are usually considered independently but persistence of genomic prediction accuracies across breeds requires accurate estimation of QTL effects. We show that accuracy of across-breed genomic predictions was higher with BayesR than with GBLUP and that BayesR mapped QTL more precisely. Further improvements of across-breed accuracy of genomic predictions and QTL mapping could be achieved by increasing the size of the reference population, including more breeds, and possibly by exploiting pleiotropic effects to improve mapping efficiency for QTL with small effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0074-4) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Nellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population.

Methods

Influential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group.

Results

Accuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships.

Conclusions

Bayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.  相似文献   

7.
We established a genomic model of quantitative trait with genomic additive and dominance relationships that parallels the traditional quantitative genetics model, which partitions a genotypic value as breeding value plus dominance deviation and calculates additive and dominance relationships using pedigree information. Based on this genomic model, two sets of computationally complementary but mathematically identical mixed model methods were developed for genomic best linear unbiased prediction (GBLUP) and genomic restricted maximum likelihood estimation (GREML) of additive and dominance effects using SNP markers. These two sets are referred to as the CE and QM sets, where the CE set was designed for large numbers of markers and the QM set was designed for large numbers of individuals. GBLUP and associated accuracy formulations for individuals in training and validation data sets were derived for breeding values, dominance deviations and genotypic values. Simulation study showed that GREML and GBLUP generally were able to capture small additive and dominance effects that each accounted for 0.00005–0.0003 of the phenotypic variance and GREML was able to differentiate true additive and dominance heritability levels. GBLUP of the total genetic value as the summation of additive and dominance effects had higher prediction accuracy than either additive or dominance GBLUP, causal variants had the highest accuracy of GREML and GBLUP, and predicted accuracies were in agreement with observed accuracies. Genomic additive and dominance relationship matrices using SNP markers were consistent with theoretical expectations. The GREML and GBLUP methods can be an effective tool for assessing the type and magnitude of genetic effects affecting a phenotype and for predicting the total genetic value at the whole genome level.  相似文献   

8.
This study aimed to assess the predictive ability of different machine learning (ML) methods for genomic prediction of reproductive traits in Nellore cattle. The studied traits were age at first calving (AFC), scrotal circumference (SC), early pregnancy (EP) and stayability (STAY). The numbers of genotyped animals and SNP markers available were 2342 and 321 419 (AFC), 4671 and 309 486 (SC), 2681 and 319 619 (STAY) and 3356 and 319 108 (EP). Predictive ability of support vector regression (SVR), Bayesian regularized artificial neural network (BRANN) and random forest (RF) were compared with results obtained using parametric models (genomic best linear unbiased predictor, GBLUP, and Bayesian least absolute shrinkage and selection operator, BLASSO). A 5‐fold cross‐validation strategy was performed and the average prediction accuracy (ACC) and mean squared errors (MSE) were computed. The ACC was defined as the linear correlation between predicted and observed breeding values for categorical traits (EP and STAY) and as the correlation between predicted and observed adjusted phenotypes divided by the square root of the estimated heritability for continuous traits (AFC and SC). The average ACC varied from low to moderate depending on the trait and model under consideration, ranging between 0.56 and 0.63 (AFC), 0.27 and 0.36 (SC), 0.57 and 0.67 (EP), and 0.52 and 0.62 (STAY). SVR provided slightly better accuracies than the parametric models for all traits, increasing the prediction accuracy for AFC to around 6.3 and 4.8% compared with GBLUP and BLASSO respectively. Likewise, there was an increase of 8.3% for SC, 4.5% for EP and 4.8% for STAY, comparing SVR with both GBLUP and BLASSO. In contrast, the RF and BRANN did not present competitive predictive ability compared with the parametric models. The results indicate that SVR is a suitable method for genome‐enabled prediction of reproductive traits in Nellore cattle. Further, the optimal kernel bandwidth parameter in the SVR model was trait‐dependent, thus, a fine‐tuning for this hyper‐parameter in the training phase is crucial.  相似文献   

9.
Explicitly fitting effects for major genes or QTL that account for a large percentage of variation in a whole genomic prediction model may increase prediction accuracy. This study compared approaches to account for a major effect of an F94L variant in the MSTN gene within the genomic prediction using bovine whole‐genomic SNP markers. Among the beef cattle breeds, Limousin have been known to have an F94L variant that is not present in Angus. The reference population in this study consisted of 3060 beef cattle including pure‐bred Limousin (PL), cross‐bred Limousin with Angus (LF) and pure‐bred Angus, genotyped using a BovineSNP50 BeadChip and directly for the MSTN‐F94L variant. We compared prediction accuracies in PL animals using the three datasets from only the PL population, admixed PL and LF (AL) or multibreed analysis using all of the PL, LF and Angus (MB) population according to four‐fold cross‐validation after K‐means clustering. The MSTN‐F94L variant was the most strongly associated with five traits (birth weight, calving ease direct, milk, weaning weight and yield grade) among the 13 measured traits in PL and AL populations. Fitting the MSTN‐F94L variant as a random effect, the genomic prediction accuracies for birth weight increased by 2.7% in PL, by 2.2% in AL and by 3.2% in MB. Prediction accuracies for five traits increased in the MB analysis. Fitting MSTN‐F94L as a fixed effect in PL, AL and MB analyses resulted in increased prediction accuracy in PL for eight traits. Prediction accuracies can be improved by including a causal variant in genomic evaluation compared with simply using whole‐genome SNP markers. Fitting the causal variant as a fixed effect along with markers fitted as random effects resulted in greater prediction accuracies for most traits. Causal variants should be genotyped along with SNP markers.  相似文献   

10.

Background

The one-step blending approach has been suggested for genomic prediction in dairy cattle. The core of this approach is to incorporate pedigree and phenotypic information of non-genotyped animals. The objective of this study was to investigate the improvement of the accuracy of genomic prediction using the one-step blending method in Chinese Holstein cattle.

Findings

Three methods, GBLUP (genomic best linear unbiased prediction), original one-step blending with a genomic relationship matrix, and adjusted one-step blending with an adjusted genomic relationship matrix, were compared with respect to the accuracy of genomic prediction for five milk production traits in Chinese Holstein. For the two one-step blending methods, de-regressed proofs of 17 509 non-genotyped cows, including 424 dams and 17 085 half-sisters of the validation cows, were incorporated in the prediction model. The results showed that, averaged over the five milk production traits, the one-step blending increased the accuracy of genomic prediction by about 0.12 compared to GBLUP. No further improvement in accuracies was obtained from the adjusted one-step blending over the original one-step blending in our situation. Improvements in accuracies obtained with both one-step blending methods were almost completely contributed by the non-genotyped dams.

Conclusions

Compared with GBLUP, the one-step blending approach can significantly improve the accuracy of genomic prediction for milk production traits in Chinese Holstein cattle. Thus, the one-step blending is a promising approach for practical genomic selection in Chinese Holstein cattle, where the reference population mainly consists of cows.  相似文献   

11.
Accuracy of genomic breeding values in multi-breed dairy cattle populations   总被引:1,自引:0,他引:1  

Background

Two key findings from genomic selection experiments are 1) the reference population used must be very large to subsequently predict accurate genomic estimated breeding values (GEBV), and 2) prediction equations derived in one breed do not predict accurate GEBV when applied to other breeds. Both findings are a problem for breeds where the number of individuals in the reference population is limited. A multi-breed reference population is a potential solution, and here we investigate the accuracies of GEBV in Holstein dairy cattle and Jersey dairy cattle when the reference population is single breed or multi-breed. The accuracies were obtained both as a function of elements of the inverse coefficient matrix and from the realised accuracies of GEBV.

Methods

Best linear unbiased prediction with a multi-breed genomic relationship matrix (GBLUP) and two Bayesian methods (BAYESA and BAYES_SSVS) which estimate individual SNP effects were used to predict GEBV for 400 and 77 young Holstein and Jersey bulls respectively, from a reference population of 781 and 287 Holstein and Jersey bulls, respectively. Genotypes of 39,048 SNP markers were used. Phenotypes in the reference population were de-regressed breeding values for production traits. For the GBLUP method, expected accuracies calculated from the diagonal of the inverse of coefficient matrix were compared to realised accuracies.

Results

When GBLUP was used, expected accuracies from a function of elements of the inverse coefficient matrix agreed reasonably well with realised accuracies calculated from the correlation between GEBV and EBV in single breed populations, but not in multi-breed populations. When the Bayesian methods were used, realised accuracies of GEBV were up to 13% higher when the multi-breed reference population was used than when a pure breed reference was used. However no consistent increase in accuracy across traits was obtained.

Conclusion

Predicting genomic breeding values using a genomic relationship matrix is an attractive approach to implement genomic selection as expected accuracies of GEBV can be readily derived. However in multi-breed populations, Bayesian approaches give higher accuracies for some traits. Finally, multi-breed reference populations will be a valuable resource to fine map QTL.  相似文献   

12.

Background

Although simulation studies show that combining multiple breeds in one reference population increases accuracy of genomic prediction, this is not always confirmed in empirical studies. This discrepancy might be due to the assumptions on quantitative trait loci (QTL) properties applied in simulation studies, including number of QTL, spectrum of QTL allele frequencies across breeds, and distribution of allele substitution effects. We investigated the effects of QTL properties and of including a random across- and within-breed animal effect in a genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed genomic prediction using genotypes of Holstein-Friesian and Jersey cows.

Methods

Genotypes of three classes of variants obtained from whole-genome sequence data, with moderately low, very low or extremely low average minor allele frequencies (MAF), were imputed in 3000 Holstein-Friesian and 3000 Jersey cows that had real high-density genotypes. Phenotypes of traits controlled by QTL with different properties were simulated by sampling 100 or 1000 QTL from one class of variants and their allele substitution effects either randomly from a gamma distribution, or computed such that each QTL explained the same variance, i.e. rare alleles had a large effect. Genomic breeding values for 1000 selection candidates per breed were estimated using GBLUP modelsincluding a random across- and a within-breed animal effect.

Results

For all three classes of QTL allele frequency spectra, accuracies of genomic prediction were not affected by the addition of 2000 individuals of the other breed to a reference population of the same breed as the selection candidates. Accuracies of both single- and multi-breed genomic prediction decreased as MAF of QTL decreased, especially when rare alleles had a large effect. Accuracies of genomic prediction were similar for the models with and without a random within-breed animal effect, probably because of insufficient power to separate across- and within-breed animal effects.

Conclusions

Accuracy of both single- and multi-breed genomic prediction depends on the properties of the QTL that underlie the trait. As QTL MAF decreased, accuracy decreased, especially when rare alleles had a large effect. This demonstrates that QTL properties are key parameters that determine the accuracy of genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0124-6) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

The theory of genomic selection is based on the prediction of the effects of quantitative trait loci (QTL) in linkage disequilibrium (LD) with markers. However, there is increasing evidence that genomic selection also relies on "relationships" between individuals to accurately predict genetic values. Therefore, a better understanding of what genomic selection actually predicts is relevant so that appropriate methods of analysis are used in genomic evaluations.

Methods

Simulation was used to compare the performance of estimates of breeding values based on pedigree relationships (Best Linear Unbiased Prediction, BLUP), genomic relationships (gBLUP), and based on a Bayesian variable selection model (Bayes B) to estimate breeding values under a range of different underlying models of genetic variation. The effects of different marker densities and varying animal relationships were also examined.

Results

This study shows that genomic selection methods can predict a proportion of the additive genetic value when genetic variation is controlled by common quantitative trait loci (QTL model), rare loci (rare variant model), all loci (infinitesimal model) and a random association (a polygenic model). The Bayes B method was able to estimate breeding values more accurately than gBLUP under the QTL and rare variant models, for the alternative marker densities and reference populations. The Bayes B and gBLUP methods had similar accuracies under the infinitesimal model.

Conclusions

Our results suggest that Bayes B is superior to gBLUP to estimate breeding values from genomic data. The underlying model of genetic variation greatly affects the predictive ability of genomic selection methods, and the superiority of Bayes B over gBLUP is highly dependent on the presence of large QTL effects. The use of SNP sequence data will outperform the less dense marker panels. However, the size and distribution of QTL effects and the size of reference populations still greatly influence the effectiveness of using sequence data for genomic prediction.  相似文献   

14.

Background

Genomic predictions can be applied early in life without impacting selection candidates. This is especially useful for meat quality traits in sheep. Carcass and novel meat quality traits were predicted in a multi-breed sheep population that included Merino, Border Leicester, Polled Dorset and White Suffolk sheep and their crosses.

Methods

Prediction of breeding values by best linear unbiased prediction (BLUP) based on pedigree information was compared to prediction based on genomic BLUP (GBLUP) and a Bayesian prediction method (BayesR). Cross-validation of predictions across sire families was used to evaluate the accuracy of predictions based on the correlation of predicted and observed values and the regression of observed on predicted values was used to evaluate bias of methods. Accuracies and regression coefficients were calculated using either phenotypes or adjusted phenotypes as observed variables.

Results and conclusions

Genomic methods increased the accuracy of predicted breeding values to on average 0.2 across traits (range 0.07 to 0.31), compared to an average accuracy of 0.09 for pedigree-based BLUP. However, for some traits with smaller reference population size, there was no increase in accuracy or it was small. No clear differences in accuracy were observed between GBLUP and BayesR. The regression of phenotypes on breeding values was close to 1 for all methods, indicating little bias, except for GBLUP and adjusted phenotypes (regression = 0.78). Accuracies calculated with adjusted (for fixed effects) phenotypes were less variable than accuracies based on unadjusted phenotypes, indicating that fixed effects influence the latter. Increasing the reference population size increased accuracy, indicating that adding more records will be beneficial. For the Merino, Polled Dorset and White Suffolk breeds, accuracies were greater than for the Border Leicester breed due to the smaller sample size and limited across-breed prediction. BayesR detected only a few large marker effects but one region on chromosome 6 was associated with large effects for several traits. Cross-validation produced very similar variability of accuracy and regression coefficients for BLUP, GBLUP and BayesR, showing that this variability is not a property of genomic methods alone. Our results show that genomic selection for novel difficult-to-measure traits is a feasible strategy to achieve increased genetic gain.  相似文献   

15.
Genomic prediction models are often calibrated using multi-generation data. Over time, as data accumulates, training data sets become increasingly heterogeneous. Differences in allele frequency and linkage disequilibrium patterns between the training and prediction genotypes may limit prediction accuracy. This leads to the question of whether all available data or a subset of it should be used to calibrate genomic prediction models. Previous research on training set optimization has focused on identifying a subset of the available data that is optimal for a given prediction set. However, this approach does not contemplate the possibility that different training sets may be optimal for different prediction genotypes. To address this problem, we recently introduced a sparse selection index (SSI) that identifies an optimal training set for each individual in a prediction set. Using additive genomic relationships, the SSI can provide increased accuracy relative to genomic-BLUP (GBLUP). Non-parametric genomic models using Gaussian kernels (KBLUP) have, in some cases, yielded higher prediction accuracies than standard additive models. Therefore, here we studied whether combining SSIs and kernel methods could further improve prediction accuracy when training genomic models using multi-generation data. Using four years of doubled haploid maize data from the International Maize and Wheat Improvement Center (CIMMYT), we found that when predicting grain yield the KBLUP outperformed the GBLUP, and that using SSI with additive relationships (GSSI) lead to 5–17% increases in accuracy, relative to the GBLUP. However, differences in prediction accuracy between the KBLUP and the kernel-based SSI were smaller and not always significant.Subject terms: Quantitative trait, Genetic models  相似文献   

16.
近年来,随着基因芯片技术的发展与育种技术的进步,动植物的基因组选择成为研究热点。在家畜育种中,基因组选择凭借其准确性高、世代间隔短和育种成本低等优势被应用于各种经济动物的种畜选择中。本文详细介绍了基因分型技术和基因组育种值估计方法(最小二乘法、RR-BLUP法、GBLUP法、ssGBLUP法、贝叶斯A法、贝叶斯B法等),并对这些育种方法选用的标记范围、准确性以及计算速度进行了比较,总结了我国和其他国家基因组选择在种畜选择中的应用情况及存在的问题,展望了目前国内外在基因组选择上的最新研究动态及进展,以期为其他育种工作者进一步了解基因组选择提供参考。  相似文献   

17.
Feed efficiency traits (FETs) are important economic indicators in poultry production. Because feed intake (FI) is a time-dependent variable, longitudinal models can provide insights into the genetic basis of FET variation over time. It is expected that the application of longitudinal models as part of genome-wide association (GWA) and genomic selection (i.e. genome-wide selection (GS)) studies will lead to an increase in accuracy of selection. Thus, the objectives of this study were to evaluate the accuracy of estimated breeding values (EBVs) based on pedigree as well as high-density single nucleotide polymorphism (SNP) genotypes, and to conduct a GWA study on longitudinal FI and residual feed intake (RFI) in a total of 312 chickens with phenotype and genotype in the F2 population. The GWA and GS studies reported in this paper were conducted using β-spline random regression models for FI and RFI traits in a chicken F2 population, with FI and BW recorded for each bird weekly between 2 and 10 weeks of age. A single SNP regression approach was used on spline coefficients for weekly FI and RFI traits, with results showing that two significant SNPs for FI occur in the synuclein (SNCAIP) gene. Results also show that these regions are significantly associated with the spline coefficients (q2) for 5- and 6-week-old birds, while GWA study results showed no SNP association with RFI in F2 chickens. Estimated breeding value predictions obtained using a pedigree-based best linear unbiased prediction (ABLUP) model were then compared with predictions based on genomic best linear unbiased prediction (GBLUP). The accuracy was measured as correlation between genomic EBV and EBV with the phenotypic value corrected for fixed effects divided by the square root of heritability. The regression of observed on predicted values was used to estimate bias of methods. Results show that prediction accuracies using GBLUP and ABLUP for the FI measured from 2nd to 10th week were between 0.06 and 0.46 and 0.03 and 0.37, respectively. These results demonstrate that genomic methods are able to increase the accuracy of predicted breeding values at later ages on the basis of both traits, and indicate that use of a longitudinal model can improve selection accuracy for the trajectory of traits in F2 chickens when compared with conventional methods.  相似文献   

18.

Background

The prediction accuracy of several linear genomic prediction models, which have previously been used for within-line genomic prediction, was evaluated for multi-line genomic prediction.

Methods

Compared to a conventional BLUP (best linear unbiased prediction) model using pedigree data, we evaluated the following genomic prediction models: genome-enabled BLUP (GBLUP), ridge regression BLUP (RRBLUP), principal component analysis followed by ridge regression (RRPCA), BayesC and Bayesian stochastic search variable selection. Prediction accuracy was measured as the correlation between predicted breeding values and observed phenotypes divided by the square root of the heritability. The data used concerned laying hens with phenotypes for number of eggs in the first production period and known genotypes. The hens were from two closely-related brown layer lines (B1 and B2), and a third distantly-related white layer line (W1). Lines had 1004 to 1023 training animals and 238 to 240 validation animals. Training datasets consisted of animals of either single lines, or a combination of two or all three lines, and had 30 508 to 45 974 segregating single nucleotide polymorphisms.

Results

Genomic prediction models yielded 0.13 to 0.16 higher accuracies than pedigree-based BLUP. When excluding the line itself from the training dataset, genomic predictions were generally inaccurate. Use of multiple lines marginally improved prediction accuracy for B2 but did not affect or slightly decreased prediction accuracy for B1 and W1. Differences between models were generally small except for RRPCA which gave considerably higher accuracies for B2. Correlations between genomic predictions from different methods were higher than 0.96 for W1 and higher than 0.88 for B1 and B2. The greater differences between methods for B1 and B2 were probably due to the lower accuracy of predictions for B1 (~0.45) and B2 (~0.40) compared to W1 (~0.76).

Conclusions

Multi-line genomic prediction did not affect or slightly improved prediction accuracy for closely-related lines. For distantly-related lines, multi-line genomic prediction yielded similar or slightly lower accuracies than single-line genomic prediction. Bayesian variable selection and GBLUP generally gave similar accuracies. Overall, RRPCA yielded the greatest accuracies for two lines, suggesting that using PCA helps to alleviate the “n ≪ p” problem in genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-014-0057-5) contains supplementary material, which is available to authorized users.  相似文献   

19.
Joint genomic prediction (GP) is an attractive method to improve the accuracy of GP by combining information from multiple populations. However, many factors can negatively influence the accuracy of joint GP, such as differences in linkage disequilibrium phasing between single nucleotide polymorphisms (SNPs) and causal variants, minor allele frequencies and causal variants’ effect sizes across different populations. The objective of this study was to investigate whether the imputed high-density genotype data can improve the accuracy of joint GP using genomic best linear unbiased prediction (GBLUP), single-step GBLUP (ssGBLUP), multi-trait GBLUP (MT-GBLUP) and GBLUP based on genomic relationship matrix considering heterogenous minor allele frequencies across different populations (wGBLUP). Three traits, including days taken to reach slaughter weight, backfat thickness and loin muscle area, were measured on 67 276 Large White pigs from two different populations, for which 3334 were genotyped by SNP array. The results showed that a combined population could substantially improve the accuracy of GP compared with a single-population GP, especially for the population with a smaller size. The imputed SNP data had no effect for single population GP but helped to yield higher accuracy than the medium-density array data for joint GP. Of the four methods, ssGLBUP performed the best, but the advantage of ssGBLUP decreased as more individuals were genotyped. In some cases, MT-GBLUP and wGBLUP performed better than GBLUP. In conclusion, our results confirmed that joint GP could be beneficial from imputed high-density genotype data, and the wGBLUP and MT-GBLUP methods are promising for joint GP in pig breeding.  相似文献   

20.
Genetic evaluation based on information from phenotypes, pedigree and markers can be implemented using a recently developed single-step method. In this paper we compare accuracies of predicted breeding values for daily gain and feed conversion ratio (FCR) in Danish Duroc pigs obtained from different versions of single-step methods, the traditional pedigree-based method and the genomic BLUP (GBLUP) method. In particular, we present a single-step method with an adjustment of the genomic relationship matrix so that it is compatible to the pedigree-based relationship matrix. Comparisons are made for both genotyped and non-genotyped animals and univariate and bivariate models. The results show that the three methods with marker information (two single-step methods and GBLUP) produce more accurate predictions of genotyped animals than the pedigree-based method. In addition, single-step methods provide more accurate predictions for non-genotyped animals. The results also show that the single-step method with adjusted genomic relationship matrix produce more accurate predictions than the original single-step method. Finally, the results for the bivariate analyses show a somewhat improved accuracy and reduced inflation of predictions for FCR for the two single-step methods compared with the univariate analyses. The conclusions are: first, the methods with marker information improve prediction compared with the pedigree-based method; second, a single-step method, contrary to GBLUP, provides improved predictions for all animals compared to the pedigree-based method; and third, a single-step method should be used with an adjustment of the genomic relationship matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号