首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously produced a transgenic mouse line designated MT-hMet30 by introducing the human mutant transthyretin (TTR) gene carrying the mouse metallothionein promoter, and showed that the presence of human variant TTR is sufficient for amyloid deposition in various tissues of these transgenic mice. However, the expression pattern of human mutant transthyretin gene in the mouse was different from that in man. To analyse pathologic processes, it is essential to establish a transgenic mouse line in which the developmental and tissue- specific expression of the human mutant TTR gene is the same as in man. Thus, we produced two additional transgenic mouse lines carrying the human mutant TTR gene containing either 0.6 kb (0.6- hMet30) or 6.0 kb (6.0-hMet30) of the upstream region. The expression levels of 6.0-hMet30 gene in the liver and serum were the same as in man and about 10 times higher than those of 0.6- hMet30 gene. In both lines amyloid deposition was observed in similar tissues to human patients except for the peripheral and autonomic nervous tissues. The amyloid deposition started earlier and was more extensive in 6.0-hMet30 than 0.6-hMet30 mice, suggesting that the serum levels of human mutant TTR are correlated with the occurrence and degree of amyloid deposition, to some extent. Neither amyloid deposition nor degenerative changes were observed in the peripheral and autonomic nervous systems despite the transgene expression in the choroid plexus of the 6.0-hMet30 mice. In the 6.0-hMet30 mice, amyloid deposition started at 9 months of age, although the serum level of human mutant TTR reached the adult level at 1 month. These results suggest that intrinsic environmental factors other than the mutant gene are involved in the late-onset deposition of amyloid fibrils. Transgenic mice described here should be useful for analysing such factors  相似文献   

2.
Transthyretin (TTR) associated amyloidosis is an autosomal dominant disorder characterized by peripheral and autonomic neuropathy. Both genetic and environmental factors are thought to be involved in development of TTR associated amyloidosis. Previously, we demonstrated that amyloid deposition was observed in various tissues of transgenic mouse lines carrying a human mutant TTR (Met30) gene. To analyze the influence of environmental factors on TTR amyloidosis, these amyloidogenic transgenic mouse models were kept under conventional (CV) or specific pathogen free (SPF) conditions. Although the serum levels of Met30 for mice housed in the CV and SPF conditions were similar, amyloid deposition was observed in CV conditions, but not in SPF conditions. In addition, the extent of amyloid deposition in transgenic mice was dependent on duration kept under CV conditions. There were significant differences in proportion of amyloid deposition in several tissues between CV and SPF conditions. Maintenance of these mice at 30 degrees C did not induce amyloid deposition in SPF conditions. These results suggest that the SPF conditions can completely prevent amyloid deposition, and that environmental factors can affect the onset and progression even in a single gene disorder.  相似文献   

3.

Background

Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease caused by the extracellular deposition of mutant transthyretin (TTR), with special involvement of the peripheral nervous system (PNS). Currently, hepatic transplantation is considered the most efficient therapy to halt the progression of clinical symptoms in FAP since more than 95% of TTR is produced by the liver. However, less invasive and more reliable therapeutic approaches have been proposed for FAP therapy, namely based on drugs acting as inhibitors of amyloid formation or as amyloid disruptors. We have recently reported that epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, is able to inhibit TTR aggregation and fibril formation, “in vitro” and in a cellular system, and is also able to disrupt pre-formed amyloid fibrils “in vitro”.

Methodology and Principal Findings

In the present study, we assessed the effect of EGCG subchronic administration on TTR amyloidogenesis “in vivo”, using well characterized animal models for FAP. Semiquantitative immunohistochemistry (SQ-IHC) and Western blot analysis of mice tissues after treatment demonstrated that EGCG inhibits TTR toxic aggregates deposition in about 50% along the gastrointestinal tract (GI) and peripheral nervous system (PNS). Moreover EGCG treatment considerably lowered levels of several biomarkers associated with non-fibrillar TTR deposition, namely endoplasmic reticulum (ER)-stress, protein oxidation and apoptosis markers. Treatment of old FAP mice with EGCG resulted not only in the decrease of non-fibrillar TTR deposition but also in disaggregation of amyloid deposits. Consistently, matrix metalloproteinase (MMP)-9 and serum amyloid P component (SAP), both markers of amyloid deposition, were also found reduced in treated old FAP mice.

Conclusions and Significance

The dual effect of EGCG both as TTR aggregation inhibitor and amyloid fibril disruptor together with the high tolerability and low toxicity of EGCG in humans, point towards the potential use of this compound, or optimized derivatives, in the treatment of TTR-related amyloidoses.  相似文献   

4.
Familial amyloid polyneuropathy (FAP) is an autosomal dominant disease characterized by deposition of amyloid related to the presence of mutations in the transthyretin (TTR) gene. TTR is mainly synthesized in liver, choroid plexuses of brain and pancreas and secreted to plasma and cerebrospinal fluid (CSF). Although it possesses a sequon for N‐glycosylation N‐D‐S at position 98, it is not secreted as a glycoprotein. The most common FAP‐associated mutation is TTR V30M. In a screening for monoclonal antibodies developed against an amyloidogenic TTR form, we detected a distinct TTR with slower electrophoretic mobility in Western of plasma from carriers of the V30M mutation, not present in normal plasma. Mass spectrometry analyses of this slower migrating TTR (SMT) identified both wild‐type and mutant V30M; SMT was undetectable upon N‐glycosidase F treatment. Furthermore, SMT readily disappeared in the plasma of V30M ‐ FAP patients after liver transplantation and appeared in plasma of transplanted domino individuals that received a V30M liver. SMT was also detected in plasma, but not in CSF of transgenic mice for the human V30M mutation. A hepatoma cell line transduced to express human V30M did not present the SMT modification in secretion media. Glycosylated TTR was absent in fibrils extracted from human kidney V30M autopsy tissue or in TTR aggregates extracted from the intestine of human TTR transgenic mice. Studies on the metabolism of this novel, glycosylated TTR secreted from FAP liver are warranted to provide new mechanisms in protein quality control and etiopathogenesis of the disease.  相似文献   

5.
Type I familial amyloidotic polyneuropathy (FAP) results from the systemic deposition of a plasma transthyretin (TTR) variant with a Val----Met change at position 30. In an attempt to establish a model of this disease, we generated transgenic mice producing the variant TTR. A DNA fragment containing the mouse metallothionein-I promoter fused to the structural gene coding for the human TTR variant was microinjected into fertilized mouse eggs. Among 72 mice that developed from these eggs, ten carried the fusion gene and three of these showed significant concentrations of the variant TTR in their serum. These mice may be useful in elucidating the pathogenesis of FAP and in establishing a therapy for this intractable disorder.  相似文献   

6.
Familial amyloidotic polyneuropathy (FAP) is a hereditary disease characterized by the systemic accumulation of amyloid fibrils. A mutant transthyretin (TTR) gene is mainly responsible for the disease. However, the variable age of onset and low penetrance might be due to environmental factors, one of which is the intestinal flora. Three types of intestinal flora were introduced into a transgenic (Tg) mouse FAP model, 6.0-hMet30. The CV1 and CV2 group transgenic mice were transferred with the intestinal flora from two different mouse facilities housed under conventional conditions, and the SPF group transgenic mice were kept under specific pathogen free conditions in our facility. All the mice were maintained under controlled temperature, humidity and bacterial conditions. Over a period of 28 months, amyloid was not deposited in the SPF and CV1 groups. In contrast, amyloid was deposited in the esophagus and small intestine of two of the three CV2 mice at 18 months. Many neutrophils infiltrated the lesions. The numbers of tissue neutrophils were higher in the CV2 group than in the SPF and CV1 groups at 18 months. The CV2 flora included fewer gram-positive anaerobic cocci as well as higher proportions of yeasts, staphylococci and enterobacteriaceae compared with the SPF and CV1 flora. These findings suggest that the intestinal flora plays an important role in amyloid deposition.  相似文献   

7.
The hallmark of familial amyloid polyneuropathy (FAP) is the presence of extracellular deposits of transthyretin (TTR) aggregates and amyloid fibers in several tissues, particularly in the peripheral nervous system. The molecular pathways to neurodegeneration in FAP still remain elusive; activation of nuclear factor kappaB, pro-inflammatory cytokines, oxidative stress, and pro-apoptotic caspase-3 has been demonstrated "in vivo" in clinical samples and in cell culture systems. In this study, we investigated the involvement of endoplasmic reticulum (ER) stress response in FAP by showing activation of the classical unfolded protein response pathways in tissues not specialized in TTR synthesis but presenting extracellular TTR aggregate and fibril deposition. We also proved cytotoxicity by Ca2+ efflux from the ER in cell cultures incubated with TTR oligomers. Taken together, these studies evidence ER stress associated with a extracellular signal in a misfolding disorder.  相似文献   

8.
Mutations in transthyretin (TTR) are associated with familial amyloid polyneuropathy, a neurodegenerative disorder characterized by TTR deposition in the PNS. The aim of this study was to unravel whether TTR has a role in nerve physiology that could account for its preferential accumulation in the PNS, when mutated. The sensorimotor performance of wild-type and TTR knockout (KO) littermate mice was compared and showed impairment in mice lacking TTR. Given the possibility that, upon regeneration, the consequences arising from TTR absence might be exacerbated, nerve crush was performed in both strains. TTR KO mice presented delayed functional recovery resulting from decreased number of myelinated and unmyelinated fibers. Moreover, in transgenic mice in a TTR KO background, expressing human TTR in neurons, this phenotype was rescued, reinforcing that TTR enhances nerve regeneration. In vitro assays showed that neurite outgrowth and extension were decreased in the absence of TTR, probably underlying the decreased number of regenerating axons in TTR KO mice. Our findings demonstrate that TTR participates in nerve physiology and that it enhances nerve regeneration. Moreover, the assignment of a TTR function in nerve biology and repair, may explain its preferential deposition, when mutated, in the PNS of familial amyloid polyneuropathy patients.  相似文献   

9.
Patients with familial amyloid polyneuropathy (FAP) are now cured by liver transplantation, but cardiac amyloidosis would further progress even after liver transplantation in some patients. To clarify the pathological mechanism of the progress of cardiac amyloidosis in FAP, we investigated cardiac tissues obtained from 6 FAP patients with 3 different types of TTR mutations. One of them had undergone liver transplantation and one year later died of cardiac amyloidosis. We determined clinical severity of cardiac involvement of those patients and characterized amyloid fibril proteins depositing in their cardiac muscles by immunohistochemistry, mass spectrometry and isoelectric focusing. All the patients had cardiac dysfunction and increased cardiac weight. Diffuse deposition of TTR-related amyloid was seen in their myocardium on microscopic examination. Amyloid fibrils of the heart were composed of wild-type TTR as well as variant TTR at a ratio of about 1:1 in 5 patients without liver transplantation. In the patient with a transplanted liver, about 80% of the cardiac amyloid consisted of wild-type TTR. Wild-type TTR contributes greatly to the development of amyloid deposition in the heart of FAP patients regardless of the types of TTR mutations.  相似文献   

10.
Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disorder characterized by the extracellular deposition of transthyretin (TTR), especially in the PNS. Given the invasiveness of nerve biopsy, salivary glands (SG) from FAP patients were used previously in microarray analysis; mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1) was down-regulated in FAP. Results were validated by RT-PCR and immunohistochemistry both in SG and in nerve biopsies of different stages of disease progression. MKP-3 was also down-regulated in FAP SG biopsies. Given the relationship between MKPs and MAPKs, the latter were investigated. Only extracellular signal-regulated kinases 1/2 (ERK1/2) displayed increased activation in FAP SG and nerves. ERK1/2 kinase (MEK1/2) activation was also up-regulated in FAP nerves. In addition, an FAP transgenic mouse model revealed increased ERK1/2 activation in peripheral nerve affected with TTR deposition when compared to control animals. Cultured rat Schwannoma cell line treatment with TTR aggregates stimulated ERK1/2 activation, which was partially mediated by the receptor for advanced glycation end-products (RAGE). Moreover, caspase-3 activation triggered by TTR aggregates was abrogated by U0126, a MEK1/2 inhibitor, indicating that ERK1/2 activation is essential for TTR aggregates-induced cytotoxicity. Taken together, these data suggest that abnormally sustained activation of ERK in FAP may represent an early signaling cascade leading to neurodegeneration.  相似文献   

11.
Familial amyloidotic polyneuropathy (FAP) is a hereditary systemic amyloidosis caused by dominantly acting missense mutations in the gene encoding transthyretin (TTR). The most common mutant TTR is of the Val30Met type, which results from a point mutation. Because the major constituent of amyloid fibrils is mutant TTR, agents that selectively suppress mutant TTR expression could be powerful therapeutic tools. This study has been performed to evaluate the use of small interfering RNAs (siRNAs) for the selective silencing of mutant Val30Met TTR in cell culture systems. We have identified an siRNA that specifically inhibits mutant, but not wild-type, TTR expression even in cells expressing both alleles. Thus, this siRNA-based approach may have potential for the gene therapy of FAP.  相似文献   

12.
The identification of specific biomarkers provides opportunities to develop early diagnostic parameters, monitor disease progression, and test drug efficiency in clinical trials. We previously demonstrated that in familial amyloidotic polyneuropathy (FAP) related to the abnormal extracellular tissue deposition of mutant transthyretin (TTR), inflammatory and apoptotic pathways are triggered in the presymptomatic stages of the disease, when nonfibrillar TTR deposits are present. In the present work, to better define biomarkers for future assessment of prophylactic and therapeutic drugs in the treatment of FAP, we extended the search for oxidative stress and apoptotic biomarkers to clinical samples and animal models presenting nonfibrillar and fibrillar TTR. We found that lipid peroxidation measured by hydroxynonenal, oxidative DNA damage measured by 8-hydroxy-2'-deoxyguanosine, and cellular redox homeostasis measured by glutaredoxin 1 were consistently increased in biopsy specimens from FAP patients and in tissues from transgenic mouse models presenting nonfibrillar TTR deposition. Death-receptor Fas, caspase-8, and Bax were also found to be increased, indicative of the involvement of death receptors in the observed apoptosis process. Removal of TTR deposition by an immunization protocol resulted in significant decreases of the selected markers we describe, corroborating the relationship between TTR deposition, oxidative stress, and apoptosis. Taken together, our results provide a robust biomarker profile for initial experimental animal studies and clinical trials to assess the application of the selected markers in therapies aimed at removal and/or inhibition of TTR polymerization.  相似文献   

13.
We established a diagnosis of familial amyloidotic polyneuropathy (FAP) based on DNA and demonstrated a direct link between prealbumin gene mutation and FAP. The individuals with FAP, so far examined, were heterozygous for the prealbumin gene, carrying one normal and one mutant gene. To investigate the molecular pathogenesis of FAP, we isolated a normal prealbumin gene (7 kb in length) and also a mutant prealbumin gene associated with FAP. We compared their nucleotide sequences and found that they matched except for a single-base substitution present in the second exon. In an effort to construct mouse model systems for the FAP, we developed strains of transgenic mice carrying human mutant prealbumin genes.  相似文献   

14.
Genetic basis for familial amyloidotic polyneuropathy   总被引:2,自引:0,他引:2  
Familial amyloidotic polyneuropathy (FAP) is an inherited systemic amyloidosis, characterized by the extracellular deposition of fibrillar amyloid protein, i.e. a variant type of prealbumin, and by prominent peripheral nerve involvement. We recently established the basis of FAP, using a cloned human prealbumin cDNA, restriction endonuclease(s) and Southern blot procedures. This approach clearly revealed a direct link between mutation in the prealbumin gene and FAP; individuals with FAP are heterozygous for the prealbumin gene, carrying one normal and one mutant gene. Molecular analysis of the prealbumin gene yielded pertinent data on the genetic basis for FAP.  相似文献   

15.
Amyloidogenic transthyretin (ATTR) is the pathogenic protein of familial amyloidotic polyneuropathy (FAP). To establish a tool for analyses of ATTR metabolisms including after liver transplantations, we developed a transgenic rat model expressing human ATTR V30M and confirmed expressions of human ATTR V30M in various tissues. Mass spectrometry for purified TTR revealed that rat intrinsic TTR and human ATTR V30M formed tetramers. Congo red staining and immunohistochemistry revealed that nonfibrillar deposits of human ATTR V30M, but not amyloid deposits, were detected in the gastrointestinal tracts of the transgenic rats. At 24h after liver transplantation, serum human ATTR V30M levels in transgenic rats that received livers from normal rats became lower than detectable levels. These results thus suggest that this transgenic rat may be a useful animal model which analyzes the metabolism of human ATTR V30M including liver transplantation studies.  相似文献   

16.

Background

A functional link has been established between the severe neurodegenerative disorder Familial amyloidotic polyneuropathy and the enhanced propensity of the plasma protein transthyretin (TTR) to form aggregates in patients with single point mutations in the TTR gene. Previous work has led to the establishment of an experimental model based on transgenic expression of normal or mutant forms of human TTR in Drosophila flies. Remarkably, the severity of the phenotype was greater in flies that expressed a single copy than with two copies of the mutated gene.

Methodology/Principal Findings

In this study, we analyze the distribution of normal and mutant TTR in transgenic flies, and the ultrastructure of TTR-positive tissues to clarify if aggregates and/or amyloid filaments are formed. We report the formation of intracellular aggregates of 20 nm spherules and amyloid filaments in thoracic adipose tissue and in brain glia, two tissues that do not express the transgene. The formation of aggregates of nanospherules increased with age and was more considerable in flies with two copies of mutated TTR. Treatment of human neuronal cells with protein extracts prepared from TTR flies of different age showed that the extracts from older flies were less toxic than those from younger flies.

Conclusions/Significance

These findings suggest that the uptake of TTR from the circulation and its subsequent segregation into cytoplasmic quasi-crystalline arrays of nanospherules is part of a mechanism that neutralizes the toxic effect of TTR.  相似文献   

17.
One hallmark of Alzheimer disease is the accumulation of amyloid beta-peptide in the brain and its deposition as plaques. Mice transgenic for an amyloid beta precursor protein (APP) mini-gene driven by a platelet-derived (PD) growth factor promoter (PDAPP mice), which overexpress one of the disease-linked mutant forms of the human amyloid precursor protein, show many of the pathological features of Alzheimer disease, including extensive deposition of extracellular amyloid plaques, astrocytosis and neuritic dystrophy. Active immunization of PDAPP mice with human amyloid beta-peptide reduces plaque burden and its associated pathologies. Several hypotheses have been proposed regarding the mechanism of this response. Here we report that peripheral administration of antibodies against amyloid beta-peptide, was sufficient to reduce amyloid burden. Despite their relatively modest serum levels, the passively administered antibodies were able to enter the central nervous system, decorate plaques and induce clearance of preexisting amyloid. When examined in an ex vivo assay with sections of PDAPP or Alzheimer disease brain tissue, antibodies against amyloid beta-peptide triggered microglial cells to clear plaques through Fc receptor-mediated phagocytosis and subsequent peptide degradation. These results indicate that antibodies can cross the blood-brain barrier to act directly in the central nervous system and should be considered as a therapeutic approach for the treatment of Alzheimer disease and other neurological disorders.  相似文献   

18.
The amino acid sequence of amyloid precursor protein (APP) is highly conserved, and age-related A beta aggregates have been described in a variety of vertebrate animals, with the notable exception of mice and rats. Three amino acid substitutions distinguish mouse and human A beta that might contribute to their differing properties in vivo. To examine the amyloidogenic potential of mouse A beta, we studied several lines of transgenic mice overexpressing wild-type mouse amyloid precursor protein (moAPP) either alone or in conjunction with mutant PS1 (PS1dE9). Neither overexpression of moAPP alone nor co-expression with PS1dE9 caused mice to develop Alzheimer-type amyloid pathology by 24 months of age. We further tested whether mouse A beta could accelerate the deposition of human A beta by crossing the moAPP transgenic mice to a bigenic line expressing human APPswe with PS1dE9. The triple transgenic animals (moAPP x APPswe/PS1dE9) produced 20% more A beta but formed amyloid deposits no faster and to no greater extent than APPswe/PS1dE9 siblings. Instead, the additional mouse A beta increased the detergent solubility of accumulated amyloid and exacerbated amyloid deposition in the vasculature. These findings suggest that, although mouse A beta does not influence the rate of amyloid formation, the incorporation of A beta peptides with differing sequences alters the solubility and localization of the resulting aggregates.  相似文献   

19.
The disease model of familial amyloidotic polyneuropathy—7.2-hMet30 mice—manifests amyloid deposition that consists of a human amyloidogenic mutant transthyretin (TTR) (TTR V30M). Our previous study found amyloid deposits in 14 of 27 7.2-hMet30 mice at 21–24 months of age. In addition, non-fibrillar TTR deposits were found in amyloid-negative 7.2hMet30 mice. These results suggested that TTR amyloidogenesis required not only mutant TTR but also an additional factor (or factors) as an etiologic molecule. To determine the differences in serum proteome in amyloid-positive and amyloid-negative mice in the 7.2-hMet30 model, we used proteomic analyses and studied serum samples obtained from these mice. Hemopexin (HPX) and transferrin (Tf) were detected in the serum samples from amyloid-positive mice and were also found in amyloid deposits via immunohistochemistry, but serum samples from amyloid-negative mice did not contain HPX and Tf. These two proteins were also not detected in non-fibrillar TTR deposits. In addition, in silico analyses suggested that HPX and Tf facilitate destabilization of TTR secondary structures and misfolding of TTR. These results suggest that HPX and Tf may be associated with TTR amyloidogenesis after fibrillogenesis in vivo.  相似文献   

20.
Tauroursodeoxycholic acid (TUDCA) is a unique natural compound that acts as a potent anti-apoptotic and anti-oxidant agent, reducing cytotoxicity in several neurodegenerative diseases. Since oxidative stress, apoptosis and inflammation are associated with transthyretin (TTR) deposition in Familial Amyloidotic Polyneuropathy (FAP), we investigated the possible TUDCA therapeutical application in this disease. We show by semi-quantitative immunohistochemistry and western blotting that administration of TUDCA to a transgenic mouse model of FAP decreased apoptotic and oxidative biomarkers usually associated with TTR deposition, namely the ER stress markers BiP and eIF2alpha, the Fas death receptor and oxidation products such as 3-nitrotyrosine. Most important, TUDCA treatment significantly reduced TTR toxic aggregates in as much as 75%. Since TUDCA has no effect on TTR aggregation "in vitro", this finding points for the "in vivo" modulation of TTR aggregation by cellular responses, such as by oxidative stress, ER stress and apoptosis and prompts for the use of this safe drug in prophylactic and therapeutic measures in FAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号