首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
To elucidate the physiological mechanism of chilling stress mitigated by cinnamic acid (CA) pretreatment, a cucumber variety (Cucumis sativus cv. Jinchun no. 4) was pretreated with 50 μM CA for 2 d and was then cultivated at two temperatures (15/8 and 25/18 °C) for 1 d. We investigated whether exogenous CA could protect cucumber plantlets from chilling stress (15/8 °C) and examined whether the protective effect was associated with the regulation of antioxidant enzymes and lipid peroxidation. At 2 d, exogenous CA did not influence plant growth, but induced the activities of some antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione peroxidase (GSH-Px, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) in cucumber leaves, and it also elevated the contents of reduced glutathione (GSH) and ascorbate (AsA). When CA was rinsed and the CA-pretreated seedlings were exposed to different temperatures, the antioxidant activities in leaves at 3 d had undergone additional change. Chilling increased the activities of CAT, GSH-PX, APX, GSH and AsA in leaves, but the combination of CA pretreatment and chilling enhanced the antioxidant activities even more. Moreover, chilling inhibited plant growth and increased the contents of malonaldehyde (MDA), superoxide radical (O2) and hydrogen peroxide (H2O2) in cucumber leaves, and the stress resulted in 87.5% of the second leaves being withered. When CA pretreatment was combined with the chilling stress, we observed alleviated growth inhibition and decreased contents of MDA, H2O2 and O2 in comparison to non-pretreated stressed plants, and found that the withered leaves occurred at a rate of 25.0%. We propose that CA pretreatment increases antioxidant enzyme activities in chilling-stressed leaves and decreases lipid peroxidation to some extent, enhancing the tolerance of cucumber leaves to chilling stress.  相似文献   

2.
3.
4.
Increased oxidative stress displayed during dark-senescence of wheat leaves (Triticum aestivum L.) is caused not only by the increased levels of radicals but also by a loss of antioxidant capacity. Mature leaves were incubated in 6-benzylaminopurine (BAP 10−4 M) or water (control) during 6 d in the dark. The senescence-delaying effect of BAP was associated with the retention of the chloroplast structure, 60% of the initial content of chlorophyll (Chl) and 77% of the initial content of protein. BAP reduced the degradation of the light-harvesting chlorophyll a/b binding protein (LHCP-2), and the large (LSU) and small subunits (SSU) of Rubisco. Our results indicated that the presence of the NADPH:protochlorophyllide oxidoreductase (POR, EC.1.6.99.1) was not promoted by the cytokinin, leading to the conclusion that BAP maintains the level of Chl, preventing its degradation, rather than inducing Chl biosynthesis. The internal structure of chloroplasts was maintained in BAP-treated leaves for up to 6 d, with well-organized grana thylakoids and small plastoglobuli; in contrast, chloroplasts of control leaves deteriorated rapidly from day 4 with disorganized internal membranes, and more and larger plastoglobuli. BAP increased the activities of catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) and reduced the level of H2O2 in the delayed-senescence tissue. The present research indicates that BAP reduces levels of reactive oxygen species (ROS), and enhances the activity of antioxidant enzymes (CAT, APX). Our results suggest that BAP protects the cell membranes and the photosynthetic machinery from oxidative damage during delay of senescence in the dark.  相似文献   

5.
Hu L  Li H  Pang H  Fu J 《Journal of plant physiology》2012,169(2):146-156
Salinity could damage cellular membranes through overproduction of reactive oxygen species (ROS), while antioxidant capacities play a vital role in protecting plants from salinity caused oxidative damages. The objective of this study was to investigate the toxic effect of salt on the antioxidant enzyme activities, isoforms and gene expressions in perennial ryegrass (Lolium perenne L.). Salt-tolerant ‘Quickstart II’ and salt-sensitive ‘DP1′ were subjected to 0 and 250 mM NaCl for 12 d. Salt stress increased the content of lipid peroxidation (MDA), electrolyte leakage (EL) and hydrogen peroxide (H2O2), to a greater extent in salt-sensitive genotype. Salt-stressed plant leaves exhibited a greater activity of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11) at 4 d after treatment (DAT), but a lower level of enzyme activity at 8 and 12 d, when compared to the control. Catalase (CAT, EC 1.11.1.6) activity was greater at 4 DAT and thereafter decreased in salt tolerant genotype relative to the control, whereas lower than the control during whole experiment period for salt-sensitive genotype. There were different patterns of five isoforms of SOD, POD and two isoforms of APX between two genotypes. Antioxidant gene expression was positively related to isoenzymatic and total enzymatic activities during 12-d salt-treated leaves of two genotypes, with a relatively higher level in salt-tolerant genotype. Thus, salt tolerance could be related to the constitutive/induced antioxidant gene, leading to more efficient enzyme stimulation and protection in perennial ryegrass.  相似文献   

6.
The effect of some dicarboxylic acid monoesters on growth, chlorophyll content, chlorophyllase (EC 3.1.1.14), and total peroxidase (EC 1.11.1.7.) activities was examined in detached and intact leaves of maize (Zea mays) plants grown in a greenhouse. The -monomethyl ester of itaconic acid (MEIA) at 1250 ppm had no effect on growth. However, application of the monoethyl ester of succinic (MESA) and monoethyl ester of adipic (MEAdA) acids (1250 ppm) resulted in an increased leaf area, fresh and dry weight of leaves and stems. These compounds retarded chlorophyll degradation in both detached and intact leaves. Chlorophyllase activity of the control and treated leaves was measured and related to chlorophyll content. Delaying of senescence by treatment with monoesters resulted in greater chlorophyll and protein content, compared with the control. However, the chlorophyllase activity/chlorophylla ratio in the treated plants decreased. Total peroxidase activity was higher in senescent leaves, but all treatments inhibited the increase of this enzyme activity. Prolonged carbon assimilative activity and enhanced leaf water use efficiency in treated plants was noted.  相似文献   

7.
Chinese flowering cabbage is one of the main leafy vegetables produced in China. They have a rapid leaf yellowing due to chlorophyll degradation after harvest that limits their marketing. In the present study, leaf senescence of the cabbages was manipulated by ethylene and 6-benzyl aminopurine (6-BA) treatment to investigate the correlation of leaf senescence and chlorophyll degradation related to gene expression/activities in the darkness. The patterns of several senescence associated markers, including a typical marker, the expression of senescence-associated gene SAG12, demonstrated that ethylene accelerated leaf senescence of the cabbages, while 6-BA retarded this progress. Similar to the trends of BrSAG12 gene expression, strong activation in the expression of three chlorophyll degradation related genes, pheophytinase (BrPPH), pheophorbide a oxygenase (BrPAO) and red chlorophyll catabolite reductase (BrRCCR), was detected in ethylene treated and control leaves during the incubation, while no evident increase was recorded in 6-BA treated leaves. The overall dynamics of Mg-dechelatase activities in all treatments displayed increasing trends during the senescence process, and a delayed increase in the activities was observed for 6-BA treated leaves. However, chlorophyllase activity as well as the expression of BrChlase1 and BrChlase2 decreased with the incubation in all treatments. Taken together, the expression of BrPPH, BrPAO and BrRCCR, and the activity of Mg-dechelatase was closely associated with the chlorophyll degradation during the leaf senescence process in harvested Chinese flowering cabbages under dark conditions.  相似文献   

8.
The first isolated cytokinin, 6-furfurylaminopurine (kinetin or Kin), was identified almost 55 years ago. Its biological effects on plant cells and tissues include influences on such processes as gene expression, cell cycle, chloroplast development, chlorophyll biosynthesis, stimulation of vascular development, delay of senescence, and mobilization of nutrients. In the present study we prepared a series of eight N9-substituted Kin derivatives, and characterized them with available physicochemical methods such as CI+ mass spectrometry and 1H NMR spectroscopy. All compounds were tested in three classical cytokinin bioassays: a tobacco callus assay, an Amaranthus assay, and a senescence assay with excised wheat leaves. The ability of the compounds to interact with Arabidopsis cytokinin receptors CRE1/AHK4 and AHK3 was tested in a bacterial receptor assay. Prepared derivatives with certain substitutions of the N9-atom of the purine moiety enhanced the cytokinin activity of the parent compound in the bioassays to a remarkable degree but negatively affected its perception by CRE1/AHK4 and AHK3. The ability of compounds to delay the senescence of excised wheat leaves in both dark and light conditions, was highly correlated with their ability to influence membrane lipid peroxidation, which is a typical symptom of senescence. Our results were corroborated by gene expression profiling of those genes involved in cytokinin metabolism and perception, plant senescence, and the stress response, and suggest that prepared kinetin derivatives might be used as potent anti-senescence agents.  相似文献   

9.
We studied changes in biochemical and physiological status, level of oxidative damage, and antioxidant enzyme activities in detached leaves of cucumber plants (Cucumis sativus L. cv. Pyunggangnaebyungsamchuk) that were exposed to a low temperature (4°C). Chlorophyll fluorescence (Fv/Fm) declined during the chilling treatment, but was slowly restored after the tissues were returned to 25°C. Likewise, the fluorescence quenching coefficient and relative water content decreased during the stress period, but then increased during recovery. In contrast, we detected a significant rise in protein and hydrogen peroxide contents in the chilled leaves, as well as higher activities for superoxide dismutase, ascorbate peroxidase, peroxidase, and glutathione reductase. However, the level of catalase decreased not only during chilling but also after 24 h of recovery. These results indicate that exposure to low temperatures acts as an oxidative stress. Moreover, we propose that a regulating mechanism exists in the detached cucumber leaves and contains an antioxidant defense system that induces active oxygen species, thereby alleviating the effects of chilling stress within 12 h.  相似文献   

10.
He J  Chen F  Chen S  Lv G  Deng Y  Fang W  Liu Z  Guan Z  He C 《Journal of plant physiology》2011,168(7):687-693
Artificial aphid infestation experiments on the three chrysanthemum cultivars ‘Keiun’, ‘Han6’ and ‘Jinba’ showed that the three cultivars vary markedly in their resistance. Of the three cultivars, the most resistant (‘Keiun’) produced the longest, highest and densest trichomes, the largest and fullest gland cells, and the most wax on the lower leaf epidermis. Superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), polyphenol oxidase activity (EC 1.14.18.1) and phenylalanine ammonia lyase (EC 4.3.1.5) were enhanced by aphid herbivory. In the two more resistant cultivars (‘Keiun’ and ‘Han6’), the activity of superoxide dismutase and ascorbate peroxidase enzymes rapidly increased following infestation, and their levels remained high from seventy-two to one hundred and sixty-eight hours after inoculation. We suggest that these two antioxidant enzymes contribute to aphid resistance of these chrysanthemum cultivars. All three cultivars showed quick responses to aphid infestation by increasing polyphenol oxidase and phenylalanine ammonia lyase activities during the early period after inoculation. Activities of these two defense enzymes were higher in the two resistant cultivars after 72 h after inoculation, suggesting involvement of these two enzymes in aphid resistance.  相似文献   

11.
The objective of this study was to examine the role of antioxidant enzymes in waterlogging tolerance of pigeonpea (Cajanus cajan L. Halls) genotypes ICP 301 (tolerant) and Pusa 207 (susceptible). Waterlogging resulted in visible yellowing and senescence of leaves, decrease in leaf area, dry matter, relative water content and chlorophyll content in leaves, and membrane stability index in roots and leaves. The decline in all parameters was greater in Pusa 207 than ICP 301. Oxidative stress in the form of superoxide radical, hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) contents initially decreased, however at 4 and 6 d of waterlogging it increased over control plants, probably due to activation of DPI-sensitive NADPH-oxidase. Antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase also increased under waterlogging. The comparatively greater antioxidant enzyme activities resulting in less oxidative stress in ICP 301 could be one of the factor determining its higher tolerance to flooding as compared to Pusa 207. This study is the first to conclusively prove that waterlogging induced increase in ROS is via NADPH oxidase.  相似文献   

12.
Hydrogen sulfide (H2S) is considered as a cellular signaling intermediate in higher plants, but corresponding molecular mechanisms and signal transduction pathways in plant biology are still limited. In the present study, a combination of pharmacological and biochemical approaches was used to study the effect of H2S on the alleviation of GA-induced programmed cell death (PCD) in wheat aleurone cells. The results showed that in contrast with the responses of ABA, GA brought about a gradual decrease of l-cysteine desulfhydrase (LCD) activity and H2S production, and thereafter PCD occurred. Exogenous H2S donor sodium hydrosulfide (NaHS) not only effectively blocked the decrease of endogenous H2S release, but also alleviated GA-triggered PCD in wheat aleurone cells. These responses were sensitive to hypotaurine (HT), a H2S scavenger, suggesting that this effect of NaHS was in an H2S-dependent fashion. Further experiment confirmed that H2S, rather than other sodium- or sulphur-containing compounds derived from the decomposing of NaHS, was attributed to the rescuing response. Importantly, the reversing effect was associated with glutathione (GSH) because the NaHS triggered increases of endogenous GSH content and the ratio of GSH/oxidized GSH (GSSG) in GA-treated layers, and the NaHS-mediated alleviation of PCD was markedly eliminated by l-buthionine-sulfoximine (BSO, a selective inhibitor of GSH biosynthesis). The inducible effect of NaHS was also ascribed to the modulation of heme oxygenase-1 (HO-1), because the specific inhibitor of HO-1 zinc protoporphyrin IX (ZnPP) significantly suppressed the NaHS-related responses. By contrast, the above inhibitory effects were reversed partially when carbon monoxide (CO) aqueous solution or bilirubin (BR), two of the by-products of HO-1, was added, respectively. NaHS-triggered HO-1 gene expression in GA-treated layers was also confirmed. Together, the above results clearly suggested that the H2S-delayed PCD in GA-treated wheat aleurone cells was associated with the modulation of GSH homeostasis and HO-1 gene expression.  相似文献   

13.
The relationship of cellulase to detached leaf senescence of rice seedlings was investigated by examining the effect of ABA and 6-BA on changes in the level of cellulase of leaf segments during senescence. It was shown that the rise in cellulase activity increased with declining chlorophyll content, which was used as the senescence indicator during the senescence of detached rice leaves caused by ABA. The action of ABA took place only after a 48h lag period. ABA enhanced the cellulase secretion and increased the permeability of plasma membrane. A high level of cellulase activity in cell wall closely related to membrane permeability changes. The action of cellulase in the cell wall may cause depolymerization of β-1, 4-glucan in situ, thus speeding senescence. The 6-BA reverses completely or partly the increase in cellulase activity and tile permeability caused by ABA during the first two day, }) ut it antagonized hardly any of the ABA effect from the third day on, suggesting the onset of an irreversible stage in the senescence of detached rice leaves.  相似文献   

14.
15.
Peroxisomal enzyme activities in attached senescing leaves   总被引:4,自引:0,他引:4  
Recently it has been demonstrated that detached leaves show glyoxysomal enzyme activities when incubated in darkness for several days. In this report glyoxylate-cycle enzymes have been detected in leaves of rice (Oryza sativa L.) and wheat (Triticum durum L.) from either naturally senescing or dark-treated plants. Isolated peroxisomes of rice and wheat show isocitrate lyase (EC 4.1.3.1), malate synthase (EC 4.1.3.2) and -oxidation activities. Leaf peroxisomes from dark-induced senescing leaves show glyoxylic-acid-cycle enzyme activities two to four times higher than naturally senescing leaves. The glyoxysomal activities detected in leaf peroxisomes during natural foliar senescence may represent a reverse transition of the peroxisomes into glyoxysomes.This work was supported by CNR Italy, special grant RAISA, subproject 2, paper no. 26.  相似文献   

16.
17.
It has been suggested that antioxidants play a role in regulating or modulating senescence dynamics of plant tissues. Ethylene has been shown to promote early plant senescence while controlled atmospheres (CA; reduced O2 levels and elevated CO2 levels) can delay its onset and/or severity. In order to examine the possible importance of various antioxidants in the regulation of senescence, detached spinach (Spinacia oleracea L.) leaves were stored for 35 d at 10 degrees C in one of three different atmospheres: (1) ambient air (0.3% CO2, 21.5% O2, 78.5% N2), (2) ambient air + 10 ppm ethylene to promote senescence, or (3) CA (10% CO2, 0.8% O2 and 89.2% N2) to delay senescence. At weekly intervals, material was assessed for activities of the antioxidant enzymes ascorbate peroxidase (ASPX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6), dehydroascorbate reductase (DHAR; EC 1.8.5.4), glutathione reductase (GR; EC 1.6.4.2), monodehydroascorbate reductase (MDHAR; EC 1.6.5.4), and superoxide dismutase (SOD; EC 1.15.1.1), and concentrations of the water-soluble antioxidant compounds ascorbate and glutathione. Indicators of the rate and severity of senescence (lipid peroxidation, chlorophyll, and soluble protein levels) were also determined. Results indicated that the rate and severity of senescence was similar between the leaves stored in ambient air or CA until day 35, at which point the ambient air-stored leaves exhibited a sharp increase in lipid peroxidation. Tissues under both storage regimes demonstrated significant declines only in levels of ASPX, CAT, and ascorbate. Glutathione content in the CA-stored tissue also significantly dropped, but only on day 35. In contrast, spinach leaves stored in ambient air + ethylene experienced a rapid decrease in levels of all the antioxidants assessed except SOD. Declines in levels of ASPX, CAT, and ascorbate over the 35 d storage period regardless of the composition of the storage atmosphere suggests that regulation of H2O2 levels plays an important role in both the dynamics and severity of post-harvest senescence of spinach.  相似文献   

18.
丝氨酸内肽酶在黄瓜叶片衰老中的作用   总被引:3,自引:0,他引:3  
采用丝氨酸内肽酶抑制剂和植物生长调节剂处理离体黄瓜叶片,研究了黄瓜叶片暗诱导衰老过程中丝氨酸内肽酶的作用。结果表明,6-BA50μmol/L与丝氨酸内肽酶抑制剂AEBSF能抑制叶片内肽酶活性的升高,延缓蛋白质降解,而ABA50μmol/L则促进了内肽酶活性的升高:其作用效果与AEBSF相反。活性电泳结果显示,黄瓜叶片中检测到6条内肽酶同工酶,其中4条(CEP2、3、4、6)为丝氨酸类型内肽酶,而ABA使丝氨酸内肽酶CEP2、3、4、6的活性明显增强,提示了丝氨酸类型内肽酶在黄瓜叶片衰老过程中具有重要作用。  相似文献   

19.
Plants of spring wheat (Triticum aestivum L. cv. Saxana) were grown during the autumn. Over the growth phase of three leaves (37 d after sowing), some of the plants were shaded and the plants were grown at 100 (control without shading), 70, and 40 % photosynthetically active radiation. Over 12 d, chlorophyll (Chl) and total protein (TP) contents, rate of CO2 assimilation (P N), maximal efficiency of photosystem 2 photochemistry (FV/FP), level of lipid peroxidation, and activities of antioxidative enzymes ascorbate peroxidase (APX) and glutathione reductase (GR) were followed in the 1st, 2nd, and 3rd leaves (counted according to their emergence). In un-shaded plants, the Chl and TP contents, P N, and FV/FP decreased during plant ageing. Further, lipid peroxidation increased, while the APX and GR activities related to the fresh mass (FM) decreased. The APX activity related to the TP content increased in the 3rd leaves. The plant shading accelerated senescence including the increase in lipid peroxidation especially in the 1st leaves and intensified the changes in APX and GR activities. We suggest that in the 2nd and 3rd leaves a degradation of APX was slowed down, which could reflect a tendency to maintain the antioxidant protection in chloroplasts of these leaves.  相似文献   

20.
The present study investigated the possible mediatory role of selenium (Se) in protecting plants from cadmium (Cd) toxicity. The exposure of sunflower seedlings to 20 μM Cd inhibited biomass production, decreased chlorophyll and carotenoid concentrations and strongly increased accumulation of Cd in both roots and shoots. Similarly, Cd enhanced hydrogen peroxides content and lipid peroxidation as indicated by malondialdehyde accumulation. Pre-soaking seeds with Se (5, 10 and 20 μM) alleviated the negative effect of Cd on growth and led to a decrease in oxidative injuries caused by Cd. Furthermore, Se enhanced the activities of catalase, ascorbate peroxidase and glutathione reductase, but lowered that of superoxide dismutase and guaiacol peroxidase. As important antioxidants, ascorbate and glutathione contents in sunflower leaves exposed to Cd were significantly decreased by Se treatment. The data suggest that the beneficial effect of Se during an earlier growth period could be related to avoidance of cumulative damage upon exposure to Cd, thus reducing the negative consequences of oxidative stress caused by heavy metal toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号