首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
鸟类生态能量学的几个基本问题   总被引:7,自引:1,他引:6  
生态能量学是在种群和群落水平上寻求能量与进化适合度之间的关系。本文从能量运行的最适化原理、能量与适合度之间的关系、能量与生活史进化、能量的摄入与需求是如何调节的、能量与有机体结构与功能的联系、能量和觅食理论以及能量分配与性选择等7个方面介绍了鸟类能量学的研究进展,并指出进化的最适化原理是认识能量运行模式的重要理论手段。  相似文献   

2.
鸟类生态能量学的几个基本问题(综述)   总被引:1,自引:0,他引:1  
生态能量学是在种群和群落水平上寻求能量与进化适合度之间的关系。本文从能量运行的最 适化原理、能量与适合度之间的关系、能量与生活史进化、能量的摄入与需求是如何调节的、能量与有机体结构与功能的联系、能量和觅食理论以及能量分配与性选择等7个方面介绍了鸟类能量学的研究进展,并指出进化的最适化原理是认识能量运行模式的重要理论手段。  相似文献   

3.
免疫能力与动物种群调节和生活史权衡的关系   总被引:5,自引:0,他引:5  
在生物医学和动物科学领域,免疫能力是指有机体对疾病的抵抗能力.近年来,对野生动物免疫能力的研究是一个新兴的热点领域,它与生态学结合,产生了生态免疫学.本文从生态学的角度,介绍了免疫能力的概念、影响因素及其与动物种群调节机理的关系,概述了与小型哺乳动物种群密度波动有关的免疫衰退假说、免疫能力选择假说和冬季免疫增强假说,总结了免疫能力与能量代谢和内分泌特征之间的关系,并对免疫能力在生活史权衡研究中的最新进展,即有机体生长与免疫、繁殖与免疫之间的权衡关系等进行了阐述,最后结合国际上本学科研究的发展动态,提出了一些未来的研究方向.  相似文献   

4.
植物生活史型的多样性及动态分析   总被引:22,自引:11,他引:11  
主要阐述了植物生活史型的基本定义和基本模式。根据植物的生态幅(Ecological amplitude)、适合度(Fitness)和能量分配格局将植物生活史型划分出V生活史型、S生活史型和c生活史型3个基本类型以及VS生活史型、SV生活史型、cS生活史型、Sc生活史型等6个具有混合特征的过渡类型。文中分析了权衡(丁rade—off)植物生活史各阶段的能量需求,使之合理地进行能量分配,进而使植物生活史型获得最佳的繁殖和存活效益以及最大的适合度的重要性,指出韧生代谢和次生代谢增值物生活史型及其生活史型之间相互转换的密切关系。韧生代谢物质主要用于营养生长,次生代谢物质主要用于促进繁育和拮抗环境胁迫。植物生活史型在特定时空中依生境的连续变化而发生相互转换,呈现出具动态特征的植物生活史型诺。提出了植物生活史型的形成机制,即生境中的资源状况和干扰程度构成了环境筛的径度,进而形成选择压力,以使植物按需分配能量,合成初级代谢产物或次级代谢产物来应对选择压力,形成自身的生态幅和适应对策,最终与生境相互作用过程中表现出的适合度来表征相应的生活史型。还提出了植物生活史型之间相互转化的机制,即每一种植物生活史型均有与该生活史型相对应的生境类型、选择压力、代谢物质和生活史对策,由于时空的连续变化,生境类型也发生过渡性变化,形成过渡类型(ED、DE、DF、FD),因而导致选择压力、代谢物质、生活史对策也发生过渡性变化,形成过渡类型LM、ML、MH、HM、KR、RK、RT、TR、BP、PB、PA、AP,最终通过VS、SV、SC、CS等过渡类型的形成而实现植物生活史型之间的相互转换。文中以高山红景天(Rhodiola sachalinensis)等5种植物生活史型谱为例,分析了各植物生活史型谱的动态特征并指出:V生活史型的植物因营养体较为发达、寿命较长,且能通过正常的有性生殖繁衍后代,通常都能产生稳定种群;以S生活史型为主的植物,因台子中含有来自双亲的两套基因,故有性生殖过程能产生较多遗传性不同的后代,使种群的适应环境变化的能力加强,因而容易形成爆发种群;以c生活史型为主的植物,其遗传物质与母体完全相同,故种群适应环境变化的能力较弱,因而容易导致种群濒危。  相似文献   

5.
植物生活史繁殖对策与干扰关系的研究   总被引:57,自引:7,他引:50  
植物生活史繁殖对策研究是涉及植物的适应或进化、生态系统退化与恢复过程、生物多样性保护等多方面理论生态学和应用生态学研究内容的生态学研究领域。按Grime的植物生活史繁殖对策分类、植物营养繁殖与干扰适应、种子形态学与干扰适应、土壤种子库与干扰适应、植物繁殖体传播和萌发与干扰适应论述了当今极受关注的植物生活史繁殖对策与干扰关系,简述了我国干旱区干扰与植物生活史繁殖对策关系研究。  相似文献   

6.
小型哺乳动物繁殖期的能量收支对策   总被引:1,自引:1,他引:0  
刘赫  王德华  王祖望 《兽类学报》2001,21(4):301-309
乳动物能世的分配及权衡,尤时无刘不体现于繁殖乃至生活史的各阶段。相应的生活史及繁殖对策构成了繁殖能量收支的基本理论 文章从繁殖期能量蝴分人手。综述了小哺乳动物繁殖期间的能量分配埘策及哺乳期的能量权衡:其中繁殖期闯的能量分配对策包括时间的优化分配 提高能量的同化效宰、利用体内储存及能量的补偿等对策。阐述了哺乳期的能量权衡主要对母体的能量权衡对策咀及后代的权衡理论,较系境地分析了母体与幼体以及幼体之间的能量权衡 这些繁殖能量对策是小哺乳动物长期自然选择的结果。任何单一的繁殖对策都不可能总是最优的,物种在不同的条件下会采取不同的对策适应环境。  相似文献   

7.
5种毛茛科植物个体大小依赖的繁殖分配和性分配   总被引:23,自引:3,他引:20       下载免费PDF全文
 植物繁殖分配和性分配是生活史理论的核心问题,一直受到生态学家、进化生物学家们的关注。通过对青藏高原东部高寒草甸(3 500 m)及亚高山草甸(2 900 m)毛茛科5种虫媒两性花植物花期的繁殖分配和性分配的研究发现:1)个体越大,繁殖投入越高,繁殖分配越低,与以往研究结果一致;2)性分配是个体大小依赖的,大个体更偏向雌性器官的资源投入,花粉胚珠比与个体大小的关系较复杂,因种而异;3)花期雌雄功能之间存在资源分配上的权衡(Trade-off),并且种群之间有差异,表明其受环境条件影响。  相似文献   

8.
动物个性研究进展   总被引:2,自引:1,他引:1       下载免费PDF全文
"个性"是指不同时空条件下动物种群个体间行为的稳定差异。大量的理论和实验性研究表明,个性差异在动物界普遍存在,其是种群多度和分布、物种共存及群落构建的重要驱动因子。介绍了动物个性的概念、分类及衡量指标,将前人测量个性类型的方法加以总结;随后介绍了动物个性的生态学意义,尤其是个性对动物生活史策略、种群分布与多度、群落结构和动态、生态系统功能和过程以及疾病与信息传播等的影响。在此基础上,进一步分析了在人类活动增加等全球变化背景下,动物个性如何调控动物个体行为、种群和群落动态对这些环境变化的响应。阐述了动物个性的形成与维持机制,并对未来的研究方向进行了展望。  相似文献   

9.
鸟类的资源分配和生活史策略   总被引:5,自引:0,他引:5  
PatMONAGHAN 《动物学报》2004,50(6):942-947
本文综述了对资源分配理论的研究。使用了对小黑背鸥和红嘴山鸦的研究 ,表明卵产生中的资源分配和相关的生活史策略对个体发育和长期适合度有多方面的影响 ,对于种群存活有重要意义  相似文献   

10.
种子萌发对策:理论与实验   总被引:9,自引:2,他引:7  
李良  王刚 《生态学报》2003,23(6):1165-1174
植物种子的萌发/休眠现象有复杂的原因和机制,综述了理论生态学家的研究结果。应用的理论基础是最优化理论和进化稳定对策(Ess)理论。当环境条件随机波动,种群受非密度依赖因素调节时,采用最优化理论的两头下注对策预测休眠一定会得到进化且萌发率与环境条件直接相关。环境条件稳定时采用进化稳定对策理论可得到在亲属竞争,种子扩散,基因冲突等等因素影响下的进化稳定休眠/萌发率,预测了休眠/萌发与它们之间的相互关系。以上各种环境条件影响种子萌发行为的方式可以表述为若种子立即萌发会遭遇到不良环境使适合度下降,那么就会推迟萌发,出现休眠,形成土壤种子库。萌发率应使种群适合度最优或具有进化稳定性。一些实验也部分验证了理论预测。  相似文献   

11.
Trade-offs among life-history traits are central to evolutionary theory. In quantitative genetic terms, trade-offs may be manifested as negative genetic covariances relative to the direction of selection on phenotypic traits. Although the expression and selection of ecologically important phenotypic variation are fundamentally multivariate phenomena, the in situ quantification of genetic covariances is challenging. Even for life-history traits, where well-developed theory exists with which to relate phenotypic variation to fitness variation, little evidence exists from in situ studies that negative genetic covariances are an important aspect of the genetic architecture of life-history traits. In fact, the majority of reported estimates of genetic covariances among life-history traits are positive. Here we apply theory of the genetics and selection of life histories in organisms with complex life cycles to provide a framework for quantifying the contribution of multivariate genetically based relationships among traits to evolutionary constraint. We use a Bayesian framework to link pedigree-based inference of the genetic basis of variation in life-history traits to evolutionary demography theory regarding how life histories are selected. Our results suggest that genetic covariances may be acting to constrain the evolution of female life-history traits in a wild population of red deer Cervus elaphus: genetic covariances are estimated to reduce the rate of adaptation by about 40%, relative to predicted evolutionary change in the absence of genetic covariances. Furthermore, multivariate phenotypic (rather than genetic) relationships among female life-history traits do not reveal this constraint.  相似文献   

12.
A central assumption of life history theory is that the evolution of the component traits is determined in part by trade-offs between these traits. Whereas the existence of such trade-offs has been well demonstrated, the relative importance of these remains unclear. In this paper we use optimality theory to test the hypothesis that the trade-off between present and future fecundity induced by the costs of continued growth is a sufficient explanation for the optimal age at first reproduction, alpha, and the optimal allocation to reproduction, G, in 38 populations of perch and Arctic char. This hypothesis is rejected for both traits and we conclude that this trade-off, by itself, is an insufficient explanation for the observed values of alpha and G. Similarly, a fitness function that assumes a mortality cost to reproduction but no growth cost cannot account for the observed values of alpha. In contrast, under the assumption that fitness is maximized, the observed life histories can be accounted for by the joint action of trade-offs between growth and reproductive allocation and between mortality and reproductive allocation (Individual Juvenile Mortality model). Although the ability of the growth/mortality model to fit the data does not prove that this is the mechanism driving the evolution of the optimal age at first reproduction and allocation to reproduction, the fit does demonstrate that the hypothesis is consistent with the data and hence cannot at this time be rejected. We also examine two simpler versions of this model, one in which adult mortality is a constant proportion of juvenile mortality [Proportional Juvenile Mortality (PJM) model] and one in which the proportionality is constant within but not necessarily between species [Specific Juvenile Mortality (SSJM) model]. We find that the PJM model is unacceptable but that the SSJM model produces fits suggesting that, within the two species studied, juvenile mortality is proportional to adult mortality but the value differs between the two species.  相似文献   

13.
Summary Are there underlying developmental and physiological properties of organisms that can be used to build a general theory of life history evolution? Much of the theoretical work on the evolution of life histories is based on the premise of negative developmental and genetic correlations among life history traits. If negative correlations do not exist as a general rule then no general theory taking them into account is possible. Negative genetic correlations among life history traits can come about by antagonistic pleiotropy. One cause of antagonistic pleiotropy is cost allocation trade-offs. Since cost allocation trade-offs are due to underlying physiological constraints they are expected to be common to closely related groups. A second form of antagonistic pleiotropy is specialization of genotypes to different niches. This type of antagonistic pleiotropy is expected to be specific to each population. We looked for trade-offs in life history traits of longevity and fecundity inDrosophila melanogaster. We used a half-sib mating design and raised the offspring at two temperatures, 19°C and 25°C. Correlations between longevity and fecundity showed some evidence of antagonistic pleiotropy at high temperature with no evidence of any trade-offs at low temperature. Correlations of early and late fecundity traits did show evidence of cost allocation trade-offs at both temperatures. Antagonistic pleiotropy was also found for cross-environmental correlations of fecundity traits. We conclude that, although life history trade-offs can not be generally assumed, they are frequently found among functionally related traits. Thus, we provide guidelines for the development of general theories of life history evolution.  相似文献   

14.
Fitness can be calculated using demographic parameters such as survival and fecundity, which are normally used to examine population dynamics in ecology. This concept is at the heart of Darwin's thinking on natural selection. Natural selection optimizes survival and fertility schedules through differential fitness, and these optimal schedules drive changes in population dynamics. Therefore, there must exist an interaction between ecology and evolution. One of the disciplines that focus on the interaction is "Evolutionary demography". It uses age- or stage-specific demographic parameters throughout the whole life history to explore the evolution of life histories. Data throughout the life history of a species is indispensable to study evolutionary demography. To this end, two large-scale databases of plant and animal life history are now available online, the COMPADRE Plant Matrix Database and the COMADRE Animal Matrix Database. We are now in a revolutionary era in the demographic research of plant and animal populations (including human populations). Many skills and approaches are needed to answer questions on evolutionary demography including bodies of theory and analytical toolkits. This special issue covers a wide array of subjects: (1) Demographic analysis of populations (including human populations) from the point of view of evolutionary ecology, (2) Meta-analysis using big databases of populations, (3) Eco-evolutionary studies at the population and/or community level and (4) Theoretical studies and the development of mathematical models of life history evolution. 14 collected papers are published to answer a variety of questions using original ideas, new tools, and big data.  相似文献   

15.
An individual's or a population's fitness is the result of a large number of interacting life history traits and the environment. Little information is available on the phenotypic correlations among fitness components and fitness itself, especially outside of Drosophila melanogaster. We also lack detailed information on trade-offs among life history traits. Here we present the relationship between adult progeny production and eight components of fitness, as well as some observed trade-offs between life history traits in the housefly (Musca domestica). We briefly discuss some of the ramifications of these relationships.  相似文献   

16.
Explaining the evolution of human life history traits remains an important challenge for evolutionary anthropologists. Progress is hindered by a poor appreciation of how demographic factors affect the action of natural selection. I review life history theory showing that the quantity maximized by selection depends on whether and how population growth is regulated. I show that the common use of R, a strategy’s expected lifetime number of offspring, as a fitness maximand is only appropriate under a strict set of conditions, which are apparently unappreciated by anthropologists. To concretely show how demography-free life history theory can lead to errors, I reanalyze an influential model of human life history evolution, which investigated the coevolution of a long lifespan and late age of maturity. I show that the model’s conclusions do not hold under simple changes to the implicitly assumed mechanism of density dependence, even when stated assumptions remain unchanged. This analysis suggests that progress in human life history theory requires better understanding of the demography of our ancestors.  相似文献   

17.
The evolutionary theory of senescence predicts that high extrinsic mortality in natural populations should select for accelerated reproductive investment and shortened life span. Here, we test the theory with natural populations of the Daphnia pulex-pulicaria species complex, a group of freshwater zooplankton that spans an environmental gradient of habitat permanence. We document substantial genetic variation in demographic life-history traits among parent and hybrid populations of this complex. Populations from temporary ponds have shorter life spans, earlier and faster increases of intrinsic mortality risk, and earlier and steeper declines in fecundity than populations from permanent lakes. We also examine the age-specific contribution to fitness, measured by reproductive value, and to expected lifetime reproduction; these traits decline faster in populations from temporary ponds. Despite having more rapid senescence, pond Daphnia exhibit faster juvenile growth and higher early fitness, measured as population growth rate (r). Among populations within this species complex we observed negative genetic correlations between r and indices of life-history timing, suggesting trade-offs between early- and late-life performance. Our results cannot be explained by a trade-off between survival and fecundity or by nonevolutionary theories of senescence. Instead, our data are consistent with the evolutionary theory of senescence because the genetic variation in life histories we observed is roughly congruent with the temporal scale of environmental change in the field.  相似文献   

18.
In his seminal 1954 paper on the ‘population consequences of life history phenomena’, Cole noted that ‘these computations may have practical value in dealing with valuable or noxious species’. In the present paper, the question is asked: ‘is research based on evolutionary perspectives in general, and life history theory specifically, really useful for dealing with insect pests?’ Perhaps such theory‐based research is rather a luxury: time and resources would be better spent on entirely applied aspects of the problem. The conclusion of the present discussion is that having an evolutionary perspective guiding research is actually a very cost‐effective way of dealing with applied problems, as it provides a clear basis for interpretations, generalizations and predictions. Life history theory is a very central and necessary part of both population ecology and general evolutionary theory, and its specific usefulness in pest forecasting and management are discussed. Nevertheless, our ability to predict insect population dynamics is still limited, and so is our ability to make use of an insect’s life history traits to predict its propensity to become a pest. I suggest that the former shortcoming is largely due to poor understanding of insect life history plasticity. This, in turn, may partly be due to a paucity of studies where reaction norms are investigated as putative adaptations. I suggest that the latter shortcoming is due to problems inherent with studying life history traits as adaptations, for example the lack of an independent fitness model and the fact that life histories tend to form syndromes of coadapted traits. These points are illustrated with examples from my own work on non‐pest butterflies and from insect–Eucalyptus systems.  相似文献   

19.
1. The relationships between life history, fitness and sexuality, together with their ecological and evolutionary significance, has been analysed comparing the main life-history traits and demography in three closely related species belonging to the genus Ophryotrocha. The species are: the gonochoristic O. labronica, the simultaneous hermaphrodite O. diadema and the protandrous hermaphrodite O. puerilis. 2. Survivorship and reproductive data were collected weekly and were used to construct life tables and population projection matrices for each species and compare life-history characteristics. Elasticity, life-table response and decomposition analyses were performed to examine the relative contribution of fecundity and survivorship to differences in lamda between species. 3. The gonochoristic and hermaphroditic species differ in all the main life-history parameters and also in demographic characteristics. In particular the value of lamda, used commonly to express fitness, is markedly higher in the gonochoristic species while in terms of fitness simultaneous and sequential hermaphroditism are very similar. In the genus Ophryotrocha gonochorism currently represents the most widespread condition, being characteristic of the majority of the known species in the genus. 4. Given the demographic advantage ensured by gonochorism, it remains be understood why some species have retained simultaneous hermaphroditism and one has evolved a sequential type hermaphroditism; the most probable hypothesis is correlated with the density of the species in natural habitats.  相似文献   

20.
Abstract The evolution of fitness is central to evolutionary theory, yet few experimental systems allow us to track its evolution in genetically and environmentally relevant contexts. Reverse evolution experiments allow the study of the evolutionary return to ancestral phenotypic states, including fitness. This in turn permits well‐defined tests for the dependence of adaptation on evolutionary history and environmental conditions. In the experiments described here, 20 populations of heterogeneous evolutionary histories were returned to their common ancestral environment for 50 generations, and were then compared with both their immediate differentiated ancestors and populations which had remained in the ancestral environment. One measure of fitness returned to ancestral levels to a greater extent than other characters did. The phenotypic effects of reverse evolution were also contingent on previous selective history. Moreover, convergence to the ancestral state was highly sensitive to environmental conditions. The phenotypic plasticity of fecundity, a character directly selected for, evolved during the experimental time frame. Reverse evolution appears to force multiple, diverged populations to converge on a common fitness state through different life‐history and genetic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号