首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
目的:研究核桃低聚肽(walnut oligopeptides,WOPs)抗亚健康疲劳的作用及其可能机制。方法:50只健康雄性SD大鼠随机分成5组:正常对照组、模型对照组和3个WOPs干预组(剂量分别为220、440、880 mg/kg·BW),每日经口灌胃给予受试样品。模型对照组和3个WOPs剂量组大鼠连续睡眠剥夺5d后,进行负重力竭游泳实验,记录力竭游泳时间,并测定大鼠血常规、血乳酸、肝糖原和肌糖原的变化。结果:与模型对照组相比,WOPs组大鼠力竭游泳时间明显延长,白细胞异常增高和红细胞及血红蛋白降低得到了明显改善,全血中乳酸含量显著下降,大鼠肝糖原和肌糖原的储备增高。结论:WOPs可以有效增强亚健康疲劳大鼠体力和运动耐力,起到防治亚健康疲劳的效果。  相似文献   

2.
不同游泳速度条件下瓦氏黄颡幼鱼的有氧和无氧代谢反应   总被引:1,自引:1,他引:0  
在(25±1)℃的条件下,测定瓦氏黄颡(Pelteobagrus vachelli Richardson)幼鱼体重(4.34±0.13)g的临界游泳速度(Ucrit),然后分别以临界游泳速度的不同百分比(20、40、60、80、100%Ucrit)将实验鱼分为5个速度处理组,另外设置静止对照组和高速力竭对照组。处理组实验鱼在不同游泳速度下分别游泳20min,在此过程中测定并计算运动代谢率(Activity metabolic rate,AMR),随后测定肌肉、血液和肝脏中的乳酸、糖原和葡萄糖含量。结果显示:实验鱼的绝对临界游泳速度为(48.28±1.02)cm/s,相对临界游泳速度为(6.78±0.16)BL/s;随着游泳速度的提高AMR显著增加(Pcrit时肌乳酸和血乳酸含量显著高于80%Ucrit的水平(P0.05);100%Ucrit时肝糖原含量显著低于40%Ucrit的水平(P0.05)。经计算瓦氏黄颡幼鱼到达临界游泳速度时的无氧代谢功率比例仅为11.0%,表明其游泳运动主要以有氧代谢供能;实验鱼的无氧代谢大约在80%Ucrit才开始启动,与其他鱼类比较启动时间较晚,说明其游泳运动对无氧代谢的依赖程度较低。研究提示瓦氏黄颡幼鱼是一种有氧运动能力较强的鱼类,这一能量代谢特征可能与提高其生存适合度有关。    相似文献   

3.
目的:探索腹腔注射表没食子儿茶素没食子酸酯(EGCG)对小鼠运动疲劳的拮抗作用。方法:将120只小鼠随机分为生理盐水对照(1 ml/kg·d)(A组)、EGCG低浓度组(10 mg/kg·d)(B组)、EGCG高浓度防护组(50 mg/kg·d)(C组)(n=40)。建立疲劳小鼠训练模型,每天腹腔注射不同剂量的EGCG或生理盐水,持续给药28 d。检测小鼠负重游泳、轮转耐力、爬杆、动物耐缺氧时间及血乳酸水平(BLA)、血尿素氮(BUN)、血乳酸脱氢酶(LDH)及肝糖原(LG)、肌糖原(MG)等疲劳相关指标。结果:腹腔注射EGCG组(B组、C组)小鼠负重游泳、爬杆、轮转耐力持续时间及耐缺氧存活时间显著延长,且较对照组相比具有显著性差异(P0.05,P0.01);同时提高小鼠血清中LDH浓度,降低BLA、BUN浓度及升高MG和LG含量。高浓度EGCG的抗疲劳效果与低浓度组相比更为明显(P0.05)。结论:EGCG具有拮抗小鼠运动疲劳的作用。  相似文献   

4.
张倩  康斌 《动物学研究》2013,34(4):429-436
为探讨团头鲂幼鱼(Megalobrama amblycephala)游泳行为对水流的响应规律,该文通过特制鱼类游泳行为测定装置,测定了团头鲂幼鱼在25℃,0、0.1、0.2、0.3、0.4m/s流速条件下的游速、游距、转角、至中心点的距离及游泳轨迹。结果表明:随着流速的增大,个体游速、游距及转角值均相应增大。0、0.1及0.2m/s流速组间的游速、游距及转角差异均不显著(P>0.05),但显著小于0.3和0.4m/s组别,且0.3和0.4m/s流速组之间差异均不显著(P>0.05);整个时间段内,个体至中心点的距离随流速增大并未呈现明显规律性,各流速间差异不显著(P>0.05),游速与游距呈显著线性正相关,而与转角呈显著线性负相关,与至中心点的距离则无相关性;游泳轨迹随水流增大趋向复杂化。  相似文献   

5.
目的:探讨黄芪多糖对小鼠的抗疲劳作用及机制。方法:该研究分为实验组和对照组两组,实验组设置三组剂量0.2,0.05,0.0125 g/kg对小鼠连续灌胃28天,对照组给予蒸馏水灌胃,进行负重游泳试验计算游泳力竭时间,并检测小鼠全血中血糖,血中乳酸含量,肝脏超氧化物歧化酶(SOD)、丙二醛(MDA)、乳酸脱氢酶(LDH)含量及肌组织中糖原储备量。结果:1).与对照组相比较,黄芪多糖低剂量、高剂量组小鼠负重游泳时力竭时间明显延长;2).中剂量组小鼠运动后肝脏SOD活力值比对照组明显增高,高剂量组肌糖原的储存量明显升高,而低剂量组乳酸明显降低。结论:黄芪多糖具有抗疲劳作用,可能通过增加抗氧化酶类SOD活性、减少乳酸的产生及增加肌糖原能量储存等途径起作用。  相似文献   

6.
天然河道底部的障碍物形成了复杂的水流环境,洄游鱼类对复杂水流环境的响应行为对于鱼能否上行或下行通过障碍物并完成生活史至关重要。本研究在封闭水槽中采用递增流速法测试了鳙(Aristichthys nobilis)幼鱼在不同障碍物型式下的临界游泳速度,结果表明:鳙幼鱼在自由来流、圆柱和半圆柱下的临界游泳能力无显著性差异(P>0.05),而方柱下鳙幼鱼的临界游泳能力显著降低(P<0.05);鳙幼鱼受障碍物下游复杂流场影响表现出3个特征游泳姿态,依此划分出3个位置区间;为了分析方柱下游泳能力下降的原因,统计了不同流速下鳙幼鱼在3个位置区间所占的时间百分比,并提取了相应的游泳动力学指标,包括摆尾频率、摆尾幅度、鱼头侧向最大加速度、鱼身侧向最大加速度、身体波动速度、身体波长和鱼头最大转角速度;鳙幼鱼在近柱区(障碍物下游6~26 cm; A区)停留时间最长,时间百分比高达63.1%;其次是中区(障碍物下游26~46 cm; B区)为29.1%;远柱区(障碍物下游46~66 cm; C区)最低,为7.8%;不同水流速度下,鳙幼鱼在方柱下游3个位置区间的时间百分比分布也有明显差异,在流速为5...  相似文献   

7.
目的:评价杜仲多糖(EUP)抗运动性疲劳的效果。方法:40只昆明小鼠建立一个5周的小鼠游泳模型,将小鼠分为运动对照组、蔗糖对照组、高剂量EUP组和低剂量EUP组(n=10),服药采取灌胃的方式。训练期结束后,测定各组小鼠的体重变化与游泳力竭时间、力竭游泳后动物的血糖浓度、血乳酸(BLA)浓度、血尿素氮(BUN)浓度、肌酸激酶(CK)活性、肝糖原、肌糖原含量变化。结果:EUP高剂量与低剂量组小鼠较对照组体重增加明显,E UP高剂量游泳力竭时间显著延长(P<0.05)、血清CK活性和BUN含量显著下降(P <0.05),但血糖、肝肌糖原以及BLA的水平变化不明显。结论:EUP具有抗运动性疲劳的作用,其机理与其调节机体糖代谢、节约蛋白质有关。  相似文献   

8.
目的:黄芪是一种传统的提高身体各项机能的中药,本研究旨在探讨黄芪在高原缺氧环境下对运动小鼠疲劳缓解的效果.方法:雄性昆明种小鼠,随机分为对照组和黄芪高、中、低3个剂量组(30.0,3.0,1.0 g/kg),平原对照组在平原环境下饲养,缺氧小鼠在模拟5000m高原环境中饲养,每天灌胃给药,10d后在缺氧环境下进行游泳力竭实验,观察小鼠游泳力竭时间,同时检测血乳酸、血糖、肝糖原以及血清SOD活性和肝脏MDA等指标的变化.结果:与空白对照组比较,黄芪各剂量组可明显提高缺氧小鼠力竭游泳时间(P<0.05),减少血乳酸曲线下面积(P<0.05);黄芪高、中剂量组肝糖原显著增加(P<0.05),力竭游泳后血糖明显升高(P<0.05),SOD活性升高(P<0.05),MDA降低(P<0.05).结论:黄芪可显著缓解高原低氧小鼠的运动疲劳,具有明显的抗高原疲劳效果,具有进一步研究的价值.  相似文献   

9.
鳙(花鲢)在自然环境中分布于中国南部流域至阿穆尔河,是重要的经济性鱼类,具江湖生殖洄游特性。大坝建设阻碍了其洄游产卵繁殖通道,导致自然环境中其繁殖力的下降,需要有效的过鱼设施帮助鳙通过大坝等水流屏障。为了设计高效的鱼道引导鳙通过,本文通过自制密封的鱼类游泳实验装置,研究了鳙幼鱼游泳能力。测定了5个温度(5、10、15、20和25℃)下鳙幼鱼的临界游泳速度。通过测定不同温度下,疲劳前后血清总蛋白(TP)、血糖(GLU)和甘油三酯(TG)含量,评价疲劳运动引起的生理胁迫。结果表明,在试验温度范围内,随着温度的升高,临界游泳速度显著提高(P0.05)。25℃时临界游泳速度最大,为7.01 BL/s(1.19 m/s)。在疲劳运动后,血清总蛋白、血糖和甘油三酯含量显著升高(P0.05)。水温低于15℃与高于15℃相比,鳙疲劳运动后血清总蛋白、血糖和甘油三酯含量显著升高。以鳙幼鱼为研究对象,研究了非适宜温度环境和疲劳运动胁迫下鱼类的生理反应。以期为鱼类生理学研究和渔业保护管理等领域提供理论依据,为制定有效的鱼道提供数据参考。  相似文献   

10.
肌酸对游泳大鼠乳酸、糖原含量和乳酸脱氢酶活性的影响   总被引:6,自引:0,他引:6  
为探讨肌酸对提高大鼠运动能力的作用 ,观察了肌酸对游泳大鼠血清、心肌和骨骼肌乳酸、糖原含量和乳酸脱氢酶 (LDH)活性的影响。实验用雄性wistar大鼠 2 4只 ,随机分为正常组、游泳对照组和游泳补充肌酸组。两个游泳组每天游泳训练 1h,9天后 ,游泳 4h ,测定血清、心肌和骨骼肌乳酸水平 ,测定血清和骨骼肌乳酸脱氢酶活性以及心肌与骨骼肌糖原含量。结果显示 :肌酸可抑制游泳运动后大鼠血清、心肌和骨骼肌乳酸浓度以及血清LDH活性的升高幅度 ,抑制心肌和骨骼肌糖原含量及骨骼肌LDH活力的下降。以上结果表明 ,肌酸可改善运动后机体乳酸和糖原的代谢 ,降低运动性疲劳 ,提高大鼠的运动能力  相似文献   

11.
Skeletal muscle, liver and heart glycogen variations, induced by swimming in thermal water (at 35 degrees C) as a model of physical exercise for clinical use, were studied. Muscle and liver glycogen moderately decreases after a 30-min period of swimming and comes near to depletion after 60 min. Heart glycogen decreases only slightly after 60 min. Blood glucose and plasma insulin decrease only after 60 min of swimming. A 30-min swim in thermal water, cooled to 25 degrees C, depletes muscle and liver glycogen and slightly decreases heart glycogen. Under these conditions, plasma insulin decreases and hypoglycemia occurs. The results seem to indicate some advantages of swimming in hot thermal water in order to prevent glycogen store depletion as the physiological prerequisite for a physical exercise of clinical interest to obtain therapeutical benefits, avoiding premature fatigue and exhaustion.  相似文献   

12.
The endurance capacities of rats with myocardial infarctions (MI) and of rats having undergone sham operations (SHAM) were tested during a submaximal exercise regimen that consisted of swimming to exhaustion. During this test, a decrement in the endurance capacity of the MI rat was demonstrated as the SHAM rat swam 25% longer than the MI rat (65 +/- 4 vs. 52 +/- 4 min). Glycogen concentrations were measured in the liver and the white gastrocnemius, plantaris, and soleus muscles of SHAM and MI rats that were randomly divided into four subgroups, which consisted of resting control, swim to exhaustion, swim to exhaustion + 24 h recovery, and swim to exhaustion + 24 h recovery + a second swim to exhaustion. The results demonstrated that the glycogen concentrations found in the liver, white gastrocnemius, plantaris, and soleus muscles of the SHAM and MI rats belonging to the resting control groups were similar. After swimming to exhaustion the glycogen concentrations in these tissues were significantly reduced compared with those found in the resting control groups of rats, and after 24 h of recovery the glycogen concentrations in these tissues were again similar to those found in the resting control groups of rats. Since the magnitude of the glycogen depletion in the liver and the white gastrocnemius, plantaris, and soleus muscles was similar in the SHAM and MI rats and because the SHAM rats consistently swam for longer periods of time in each of the experimental groups, it would be logical to assume that the rates of glycogen utilization for the various tissues may have been greater in the MI rat during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To simulate swimming in a trawl, age 3 year brown trout Salmo trutta (L.) were made to swim against a flow of 0·5 m s−1 for 60 min. To simulate cold shock, similar to placing them in a chilling tank, the fish were kept for 10 min in a tank containing ice and water. To simulate the combined stressors, the fish were first made to swim followed by a cold shock. The fish were in a comatose state 10 min after cold shock and combined stressors but conscious after swimming only. All the fish survived until the end of the studied recovery period (maximum 24 h). Cold shock after swimming (combined stressors v . swimming only) did not produce higher blood cortisol, lactate or glucose concentrations 10 min after the treatment. The effect of cold shock, however, was evident in the delayed start of recovery in cortisol and glucose concentrations. All the stress indicators used decreased to the levels for undisturbed fish within 24 h, except in the case of glucose after the combined stressors.  相似文献   

14.
We investigated the ergogenic effect in mice of administering highly branched cyclic dextrin (HBCD), a new type of glucose polymer, on the swimming endurance in an adjustable-current swimming pool. Male Std ddY mice were administered a HBCD, a glucose solution or water via a stomach sonde 10 min before, 10 min after or 30 min after beginning swimming exercise, and were then obliged to swim in the pool. The total swimming period until exhaustion, an index of the swimming endurance, was measured. An ergogenic effect of HBCD was observed at a dose of 500 mg/kg of body weight, whereas it had no effect at a dose of 166 mg/kg of body wt (p < 0.05). The mice administered with the HBCD solution 10 min after starting the exercise were able to swim significantly longer (p < 0.05) than the mice who had ingested water or the glucose solution. The rise in mean blood glucose level in the mice administered with HBCD, which was measured 20 min after starting swimming, was significantly lower (p < 0.05) than that in the mice administered with glucose, although it was significantly higher (p < 0.05) than that in the mice administered with water. The mean blood insulin rise in the mice given HBCD was significantly lower (p < 0.05) than that in the mice given glucose. The mice administered with HBCD 30 min after starting the exercise swam significantly longer (p < 0.05) than the mice who had ingested water, although the enhancement of swimming time was similar to that of the glucose-ingesting mice. The gastric emptying rate of the HBCD solution was significantly faster (p < 0.05) than that of the glucose solution. However, this glucose polymer must have spent more time being absorbed because it has to be hydrolyzed before absorption, reflecting a lower and possibly longer-lasting blood glucose level. We conclude that the prolongation of swimming endurance in mice administered with HBCD depended on its rapid and longer-lasting ability for supplying glucose with a lower postprandial blood insulin response, leading to a delayed onset of fatigue.  相似文献   

15.
1. In catfish (Ictalurus melas) after glucagon treatment blood glucose increased until 150 min, then it gradually decreased towards control values at the 5th hr. 2. In glucagon treated fish, liver glycogen levels were significantly lower then in controls 30 min after hormone administration; thereafter, liver glycogen levels returned rapidly to initial values. Glucagon did not induce any significant effect on the glycogen content in white and red muscles. 3. In liver slices, the addition of glucagon to the incubation medium significantly enhanced the glycogen phosphorylase activity and decreased the level of glycogen. Both phosphorylase activity and glycogen content of white and red muscle slices were practically unaffected by glucagon.  相似文献   

16.
研究通过比较鳜(Siniperca chuatsi)对不同碳水化合物的利用差异, 探究肉食性鱼类对碳水化合物利用的分子机制。按照1670 mg/kg剂量对鳜灌喂葡萄糖和糊精后, 分别在0、1h、2h、3h、4h、8h、12h和24h收集水样、血浆、肝脏和肌肉, 检测尿糖、血糖、血甘油三酯、血胰岛素、肝糖原、肌糖原含量及糖代谢相关基因表达水平等指标。结果显示: (1) 灌喂后1—12h内, 两组鳜相比, 葡萄糖组尿糖显著高于糊精组, 血糖及胰岛素含量在两组间无显著差异; (2) 两组鳜甘油三酯含量在2h时达到最大值, 糊精组甘油三酯含量在4h时显著高于葡萄糖组, 糊精组肝糖原含量在1h时显著高于葡萄糖组, 且糊精组肌糖原含量在24h内均显著高于葡萄糖组; (3) 灌喂后1h, 灌喂糊精组葡萄糖激酶(Glucokinase, GK)、脂肪酸合成酶(Fatty Acid Synthetase, FAS)、乙酰辅酶A羧化酶Ⅰ型(Acetyl-CoA Carboxylase Type Ⅰ, ACC1)、柠檬酸合成酶(Citroyl Synthetase, CS)基因表达水平显著高于葡萄糖组, 而在灌喂后8h, 糊精组糖原合酶(Glycogen Synthase, GS)和CS基因表达水平却显著低于葡萄糖组。结果表明, 肉食性鱼类鳜摄入糖后可以促进糖原和脂肪的合成, 转化为糖原和甘油三酯, 从而减少未利用糖的排出, 且鳜对葡萄糖的利用效率低于糊精。  相似文献   

17.
The main objectives of this study were to determine optimal methodologies to assess the general swimming performance of juvenile shortnose sturgeon Acipenser brevirostrum. Swimming densities (group v. individual swimming) and flume length (2 v. 1 m) were altered to verify if any of those variables affected performance (i.e. time to fatigue) during critical swimming (U(crit)) and endurance tests. Results for both U(crit) and endurance swimming were not significantly different between fish swum in groups of five or fish swum individually. The U(crit) values, however, were c. 22% higher for fish swum in a longer flume. Although swimming fish in groups did not improve swimming performance, group swimming lowered the variance of the data. Results also reveal that juvenile A. brevirostrum may not possess an ability to swim at high speeds (i.e. burst phase) for long periods.  相似文献   

18.
Summary Lactate removal and glycogen replenishment were studied in the lizardSceloporus occidentalis following exhaustion at 35°C. Whole body lactate concentrations and oxygen consumption were measured inSceloporus at rest, after 2 min vigorous exercise and at intervals during a 150 min recovery period. Lactate concentrations peaked at 2.2 mg/g (24 mM) after exercise and returned to resting levels after 90 min. Oxygen consumption returned to resting rates after 66 min. In a second set of experiments, glycogen and lactate concentrations of liver, hindlimb and trunk musculature were measured over the same time periods of exercise and recovery. The decrease in muscle glycogen following exercise was identical (mg/g) to the increase in muscle lactate, and the stoichiometric and temporal relationships between lactate removal and glycogen replenishment during the recovery period were also similar. Glycogen replenishment was rapid (within 150 min) and complete in fastedSceloporus. Dietary supplement of carbohydrate during 48 h of recovery led to supercompensation of glycogen stores in the muscle (+66%) and liver (+800%). The changes were similar to the seasonal differences measured inSceloporus from the field.  相似文献   

19.
This study compared the critical swimming speed (Ucrit) and endurance performance of three Australian freshwater fish species in different swim‐test apparatus. Estimates of Ucrit measured in a large recirculating flume were greater for all species compared with estimates from a smaller model of the same recirculating flume. Large differences were also observed for estimates of endurance swimming performance between these recirculating flumes and a free‐surface swim tunnel. Differences in estimates of performance may be attributable to variation in flow conditions within different types of swim chambers. Variation in estimates of swimming performance between different types of flumes complicates the application of laboratory‐based measures to the design of fish passage infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号