首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) were purified from diseased freshwater prawns M. rosenbergii and used to infect healthy post-larvae (PL) by an immersion method. Three groups of prawns were challenged with various combined doses of MrNV and XSV. Signs of white-tail disease (WTD) were observed in Groups 1 and 2, which had been challenged with combinations containing relatively high proportions of MrNV and low proportions of XSV. By contrast there was little sign of WTD in Group 3, which had been challenged with a higher proportion of XSV than MrNV. A 2-step Taqman real-time RT-PCR was developed and applied to quantify viral copy numbers in each challenged PL. Results showed that genomic copies of both viruses were much higher in Groups 1 and 2 than they were in Group 3, indicating that MrNV plays a key role in WTD of M. rosenbergii. The linear correlation between MrNV and XSV genome copies in infected prawns demonstrated that XSV is a satellite virus, dependent on MrNV, but its role in pathogenicity of WTD remains unclear.  相似文献   

2.
The availability of specific and reliable detection methods is essential for monitoring the health status of farmed species, particularly for viral diseases. Extra small virus (XSV), a virus-like particle, is associated with Macrobrachium rosenbergii Noda virus (MrNV) in white tail disease (WTD) of M. rosenbergii. We developed 2 genome-based detection methods for the identification of XSV, namely dot-blot hybridization and a single-step RT-PCR. Detection limits were established and are ca. 2.5 pg and 5 fg of viral RNA for dot-blot hybridization and RT-PCR, respectively. Application of the methods to field samples indicated that some animals positively diagnosed with MrNV did not contain XSV, at least within the detection limit of the methodology. This raises the question of the actual role of XSV and its interactions with MrNV in WTD of M. rosenbergii.  相似文献   

3.
Five developmental stages of Artemia were exposed to Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) by immersion and oral routes in order to investigate the possibility of Artemia acting as a reservoir or carrier of these viruses. The second objective was to determine if virus-exposed Artemia were capable of transmitting the disease to post-larvae (PL) of M. rosenbergii. There was no significant difference in percent mortality between Artemia control groups and groups challenged with these viruses. On the other hand, all the developmental stages of Artemia were positive for both viruses by nested RT-PCR, regardless of the challenge route. In horizontal transmission experiments, 100% mortality was observed in M. rosenbergii PL fed with Artemia nauplii exposed to MrNV and XSV by either challenge route. However, no mortality was observed in PL fed with virus-free Artemia. RT-PCR analysis of the M. rosenbergii PL confirmed the presence of MrNV and XSV in the challenge group and absence in the control group.  相似文献   

4.
5.
White tail disease (WTD) was found to be a serious problem in hatcheries and nursery ponds of Macrobrachium rosenbergii in India. The causative organisms have been identified as M. rosenbergii nodavirus (MrNV) and its associated extra small virus (XSV). Experimentally transmitted to healthy animals, they caused 100% mortality in post-larvae but failed to cause mortality in adult prawns. The RT-PCR assay revealed the presence of both viruses in moribund post-larvae and in gill tissue, head muscle, stomach, intestine, heart, hemolymph, pleopods, ovaries and tail muscle, but not in eyestalks or the hepatopancreas of experimentally infected adult prawns. The presence of these viruses in ovarian tissue indicates the possibility of vertical transmission. Pleopods have been found to be a suitable organ for detecting these viruses in brooders using the RT-PCR technique.  相似文献   

6.
White tail disease (WTD) is a serious viral disease in the hatcheries and nursery ponds of Macrobrachium rosenbergii in many parts of the world. A new disease similar to WTD was observed in larvae and post larvae of M. rosenbergii cultured in Malaysia. In the present study, RT-PCR assay was used to detect the causative agents of WTD, M. rosenbergii nodavirus (MrNV) and extra small virus (XSV) using specific primers for MrNV RNA2 and XSV. The results showed the presence of MrNV in the samples with or without signs of WTD. However, XSV was only detected in some of the MrNV-positive samples. Phylogenetic analysis showed that the RNA2 of our Malaysian isolates were significantly different from the other isolates. Histopathological studies revealed myofiber degeneration of the tail muscles and liquefactive myopathy in the infected prawns. This was the first report on the occurrence of MrNV in the Malaysian freshwater prawn.  相似文献   

7.
The giant freshwater prawn Macrobrachium rosenbergii is cultivated essentially in Southern and South-eastern Asian countries such as continental China, India, Thailand and Taiwan. To date, only two viral agents have been reported from this prawn. The first (HPV-type virus) was observed by chance 25 years ago in hypertrophied nuclei of hepatopancreatic epithelial cells and is closely related to members of the Parvoviridae family. The second, a nodavirus named MrNV, is always associated with a non-autonomous satellite-like virus (XSV), and is the origin of so-called white tail disease (WTD) responsible for mass mortalities and important economic losses in hatcheries and farms for over a decade. After isolation and purification of these two particles, they were physico-chemically characterized and their genome sequenced. The MrNV genome is formed with two single linear ss-RNA molecules, 3202 and 1250 nucleotides long, respectively. Each RNA segment contains only one ORF, ORF1 coding for the RNA-dependant RNA polymerase located on the long segment and ORF2 coding for the structural protein CP-43 located on the small one. The XSV genome (linear ss-RNA), 796 nucleotides long, contains a single ORF coding for the XSV coat protein CP-17. The XSV does not contain any RdRp gene and consequently needs the MrNV polymerase to replicate.  相似文献   

8.
The cultivation of exotic Penaeus vannamei in Thailand began on a very limited scale in the late 1990s, but a Thai government ban on the cultivation of P. monodon in freshwater areas in 2000 led many Thai shrimp farmers to shift to cultivation of P. vannamei. Alarmed by the possibility of Taura syndrome virus (TSV) introduction, the Thai Department of Fisheries required that imported stocks of P. vannamei be certified free of TSV by RT-PCR (Reverse Trasciption Polymerase Chain Reaction) testing. During the interval of allowed importation, over 150,000 broodstock shrimp were imported, 67% of these from China and Taiwan. Despite the safeguards, TSV outbreaks occurred and we confirmed the first outbreak by RT-PCR in early 2003. This resulted in a governmental ban on all shrimp broodstock imports from February 2003, but TSV outbreaks have continued, possibly due to original introductions or to the continued illegal importation of stocks. To determine the origin of the TSV in Thailand, the viral coat protein gene VP1 was amplified by RT-PCR from several shrimp specimens found positive for TSV by RT-PCR from January to November 2003. These included 7 samples from P. vannamei disease outbreaks in Thailand, 3 other non-diseased shrimp samples from Thailand and Burma and 6 samples including P. vannamei and P. japonicus from China. Comparison revealed that the Thai, Burmese and Chinese TSV types formed a clade distinct from a clade of TSV types from the Americas.  相似文献   

9.
The gene encoding the capsid protein of Macrobrachium rosenbergii nodavirus (MrNV) was cloned into pGEX-6P-1 expression vector and then transformed into the Escherichia coli strain BL21. After induction, capsid protein-glutathione-S-transferase (GST-MrNV; 64 kDa) was produced. The recombinant protein was separated using SDS-PAGE, excised from the gel, electro-eluted and then used for immunization for monoclonal antibody (MAb) production. Four MAbs specific to the capsid protein were selected and could be used to detect natural MrNV infections in M. rosenbergii by dot blotting, Western blotting and immunohistochemistry without cross-reaction with uninfected shrimp tissues or other common shrimp viruses. The detection sensitivity of the MAbs was 10 fmol μl-1 of the GST-MrNV, as determined using dot blotting. However, the sensitivity of the MAb on dot blotting with homogenate from naturally infected M. rosenbergii was approximately 200-fold lower than that of 1-step RT-PCR. Immunohistochemical analysis using these MAbs with infected shrimp tissues demonstrated staining in the muscles, nerve cord, gill, heart, loose connective tissue and inter-tubular tissue of the hepatopancreas. Although the positive reactions occurred in small focal areas, the immunoreactivity was clearly demonstrated. The MAbs targeted different epitopes of the capsid protein and will be used to develop a simple immunoassay strip test for rapid detection of MrNV.  相似文献   

10.
The extra small virus (XSV) is a satellite virus associated with Macrobrachium rosenbergii nodavirus (MrNV) and its genome consists of two overlapping ORFs, CP17 and CP16. Here we demonstrate that CP16 is expressed from the second AUG of the CP17 gene and is not a proteinase cleavage result of CP17. We further expressed CP17 and several truncated CP17s (in which the N- or C-terminus or both was deleted), respectively, in Escherichia coli. Except for the recombinant plasmid CP17ΔC10, all recombinant plasmids expressed soluble protein which assembled into virus-like particles (VLPs), suggesting that the C-terminus is important for VLP formation.  相似文献   

11.
Macrobrachium rosenbergii nodavirus (MrNV) is a virus native to giant freshwater prawn. Recombinant MrNV capsid protein has been produced in Escherichia coli, which self‐assembled into virus‐like particles (VLPs). However, this recombinant protein is unstable, degrading and forming heterogenous VLPs. In this study, MrNV capsid protein was produced in insect Spodoptera frugiperda (Sf9) cells through a baculovirus system. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the recombinant protein produced by the insect cells self‐assembled into highly stable, homogenous VLPs each of approximately 40 nm in diameter. Enzyme‐linked immunosorbent assay (ELISA) showed that the VLPs produced in Sf9 cells were highly antigenic and comparable to those produced in E. coli. In addition, the Sf9 produced VLPs were highly stable across a wide pH range (2–12). Interestingly, the Sf9 produced VLPs contained DNA of approximately 48 kilo base pairs and RNA molecules. This study is the first report on the production and characterization of MrNV VLPs produced in a eukaryotic system. The MrNV VLPs produced in Sf9 cells were about 10 nm bigger and had a uniform morphology compared with the VLPs produced in E. coli. The insect cell production system provides a good source of MrNV VLPs for structural and immunological studies as well as for host–pathogen interaction studies. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:549–557, 2017  相似文献   

12.
罗氏沼虾诺达病毒的核酸检测及其部分序列分析   总被引:1,自引:0,他引:1  
根据安替列群岛分离的罗氏沼虾诺达病毒株基因组序列(MrNV-ant),制备特异性核酸探针,设计特异性引物,用点杂交和RT-PCR的方法检测在中国境内分离的罗氏沼虾诺达病毒(MrNV-chin).点杂交的方法可以检测出少于26ng的患肌肉白浊症的组织样品中的病毒,或少于25ng的病毒RNA样品;RT-PCR可以检测出少于25pg的RNA样品.扩增的MrNV-chin RNA1序列长858个核苷酸,与MrNV-ant的核苷酸一致率为957%,两者翻译后的氨基酸序列的一致率为99.7%.扩增的MrNV-chin RNA 2序列长1121个核苷酸,与MrNV-ant的核苷酸一致率为92%,两者翻译后的氨基酸序列的一致率为93.2%.因此,MrNV-ant和MrNV-chin应属于同一种病毒的不同分离株.用两株罗氏沼虾诺达病毒的RNA聚合酶序列与其它6株诺达病毒RNA聚合酶序列比较后构建的进化树中,罗氏沼虾诺达病毒与Alphanodavirus的亲缘关系近于与Betanodavirus的亲缘,组成了一个新的分支.  相似文献   

13.
The objective of the present study was to investigate the source of vitellogenin in the freshwater prawn, Macrobrachium rosenbergii. Ovarian development of M. rosenbergii was classified into five stages (stage I-V). Vitellin/vitellogenin was detected in the ovary and the hepatopancreas in different stages by native-PAGE and Western blotting. Two and three subunits of vitellin were observed in the ovary at the early- (I-II), mid- and late- (III-V) stages, respectively. The subunit of vitellogenin was not detected in the hepatopancreas at different stages of prawns. Hepatopancreas had positive immunocytological staining (against vitellin antibody) in different ovarian stages of prawn. Only vitellogenic oocyte but not previtellogenic oocytes and follicle cells had a positive immunocytological staining. Hepatopancreas could synthesize radiolabeled immunoreactive proteins after incubation with radiolabeled glycine on the basis of immunoprecipitation (against vitellin antiserum). Therefore, it is concluded that hepatopancreas is the most likely organ to synthesize vitellogenin in the freshwater prawn, M. rosenbergii.  相似文献   

14.
Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand   总被引:18,自引:0,他引:18  
There are five different viruses which are currently being studied for their impact on commercial farming of the black tiger prawn (Penaeus monodon) in Thailand. Some of these viruses cause disease in other penaeid shrimp species and even other crustacean species. Some occur not only in cultivated shrimp in other Asian countries, but also in those from Australia and the western hemisphere. In descending order from greatest to least economic impact on the Thai shrimp industry, the five viruses are: white-spot baculovirus, yellow-head virus, hepatopancreatic parvo-like virus, infectious hypodermal and hematopoeitic necrosis virus and monodon baculovirus. The purpose of this review is to summarize recent work on these viruses and to suggest future directions of research that may be useful in the effort to develop a sustainable shrimp industry.  相似文献   

15.
Taura syndrome virus (TSV) was first reported as a serious cause of shrimp mortality limited to reared Penaeus (Litopenaeus) vannamei in the Americas, where it spread principally through regional and international transfer of live post larvae (PL) and broodstock. Subsequently, through importation of infected broodstock, TSV outbreaks spread to Asia, first to Taiwan and China and then to Thailand, Indonesia and Korea. Since its introduction to Thailand, outbreaks have occasionally been reported from rearing ponds stocked with batches of specific pathogen free (SPF) P. vannamei PL that tested negative for TSV by nested RT-PCR assay. Since it was possible that the outbreaks may have occurred via horizontal transfer of TSV from wild carrier species, we tested 5 common native crustaceans that live in and around shrimp ponds (2 palaemonid shrimp species, Palaemon styliferus and Macrobrachium lanchesteri, and 3 species of crabs, Sesarma mederi, Scylla serrata and Uca vocans) for susceptibility to TSV in experimental challenges. We found that U. vocans, S. serrata and S. mederi did not die but, respectively, gave strong RT-PCR reactions indicating heavy viral load at 5, 10 and 15 d post-injection of TSV and 10, 15 and up to 50 d after feeding with TSV-infected P. vannamei carcasses. Also after feeding, P. styliferus did not die, but a high proportion gave strong RT-PCR reactions at 5 d post-challenge and no reactions at 15 d. Similarly after feeding, M. lanchesteri showed no mortality and gave only light RT-PCR reactions at 2 d, moderate reactions at 5 d and no reaction at 15 d. By contrast, transmission experiments from the TSV-infected crabs and palaemonid shrimp via water or feeding resulted in death of all the exposed P. vannamei from 8 to 12 d post-challenge and all were positive for heavy viral load by RT-PCR assay. Despite the results of these laboratory challenge tests, natural TSV infections were not detected by nested RT-PCR in samples of these species taken from the wild. These results indicated that transmission of TSV from infected crabs and palaemonid shrimp via water or feeding might pose a potential risk to shrimp aquaculture.  相似文献   

16.
Hepatitis C virus (HCV) infection affects ≥ 180 million individuals worldwide especially those living in developing countries. Recent advances in direct-acting therapeutics promise effective treatments for chronic HCV carriers, but only if the affected individuals are identified. Good treatment coverage therefore requires accurate epidemiological data on HCV infection. In 2014, we determined the current prevalence of HCV in Thailand to assess whether over the past decade the significant number of chronic carriers had changed. In total, 5964 serum samples from Thai residents between 6 months and 71 years of age were obtained from 7 provinces representing all 4 geographical regions of Thailand and screened for the anti-HCV antibody. Positive samples were further analyzed using RT-PCR, sequencing, and phylogenetic analysis to identify the prevailing HCV genotypes. We found that 56 (0.94%) samples tested positive for anti-HCV antibody (mean age = 36.6±17.6 years), while HCV RNA of the core and NS5B subgenomic regions was detected in 23 (41%) and 19 (34%) of the samples, respectively. The seropositive rates appeared to increase with age and peaked in individuals 41–50 years old. These results suggested that approximately 759,000 individuals are currently anti-HCV-positive and that 357,000 individuals have viremic HCV infection. These numbers represent a significant decline in the prevalence of HCV infection. Interestingly, the frequency of genotype 6 variants increased from 8.9% to 34.8%, while the prevalence of genotype 1b declined from 27% to 13%. These most recent comprehensive estimates of HCV burden in Thailand are valuable towards evidence-based treatment coverage for specific population groups, appropriate allocation of resources, and improvement in the national public health policy.  相似文献   

17.
The giant river prawn, Macrobrachium cf. rosenbergii, is one of the most cultivated freshwater prawns in the world and has been introduced into more than 40 countries. In some countries, this prawn is considered an invasive species that requires close monitoring. Recent changes in the taxonomy of this species (separation of M. rosenbergii and M. dacqueti) require a re-evaluation of introduced taxa. In this work, molecular analyses were used to determine which of these two species was introduced into Brazil and to establish the geographic origin of the introduced populations that have invaded Amazonian coastal waters. The species introduced into Brazil was M. dacqueti through two introduction events involving prawns originating from Vietnam and either Bangladesh or Thailand. These origins differ from historical reports of the introductions and underline the need to confirm the origin of other exotic populations around the world. The invading populations in Amazonia require monitoring not only because the biodiversity of this region may be affected by the introduction, but also because admixture of different native haplotypes can increase the genetic variability and the likelihood of persistence of the invading species in new habitats.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号